YOLOv5:对yolov5n模型进一步剪枝压缩

YOLOv5:对yolov5n模型进一步剪枝压缩

  • 前言
  • 前提条件
  • 相关介绍
  • 具体步骤
    • 修改yolov5n.yaml配置文件
    • 单通道数据(黑白图片)
      • 修改models/yolo.py文件
      • 修改train.py文件
    • 剪枝后模型大小
  • 参考

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理
    专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • PyTorch 是一个深度学习框架,封装好了很多网络和深度学习相关的工具方便我们调用,而不用我们一个个去单独写了。它分为 CPU 和 GPU 版本,其他框架还有 TensorFlow、Caffe 等。PyTorch 是由 Facebook 人工智能研究院(FAIR)基于 Torch 推出的,它是一个基于 Python 的可续计算包,提供两个高级功能:1、具有强大的 GPU 加速的张量计算(如 NumPy);2、构建深度神经网络时的自动微分机制。
  • YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。它是一个在COCO数据集上预训练的物体检测架构和模型系列,代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。
  • 剪枝是一种通过去除网络中冗余的channels,filters, neurons, or layers以得到一个更轻量级的网络,同时不影响性能的方法。

具体步骤

修改yolov5n.yaml配置文件

  • YOLOv5相关YAML配置里面参数含义,可查阅YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层:
    https://blog.csdn.net/FriendshipTang/article/details/130375883
  • 这里顺带解释一下,depth_multiplewidth_multiple参数含义。
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
 - nc: 8 代表数据集中的类别数目。- depth_multiple: 0.33- 用来控制模型的深度,仅在number≠1时启用。- 如第一个C3层的参数设置为[-1, 3, C3, [128]],其中number=3,表示在yolov5s中含有 3 × 0.331个C3。- width_multiple: 0.50- 用来控制模型的宽度,主要作用于args中的channel_out。- 如第一个Conv层,输出通道数channel_out=64,那么在yolov5s中,会将卷积过程中的卷积核设置为 64 × 0.50 = 32,所以会输出 32 通道的特征图。

depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple

改为

depth_multiple: 0.16  # model depth multiple
width_multiple: 0.125  # layer channel multiple

即可达到减少卷积层数的目的。
在这里插入图片描述

单通道数据(黑白图片)

  • 如果数据集是单通道数据,即黑白图片数据集,还可以修改训练时输入的通道数(yolov5默认输入通道数ch=3,我们可以修改ch=1),减少训练参数。
  • 如果是彩色图片数据集,可跳过此部分的内容

修改models/yolo.py文件

        if m in {Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)

添加:

        if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x):c1, c2 = ch[f], args[0]# 添加的内容if i == 0: # 第一层输入,为单通道图片c1 = 1if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)

在这里插入图片描述

        # Define modelch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels

添加:

        # Define modelch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels# 添加的内容self.yaml['ch'] = 1ch = self.yaml['ch']

在这里插入图片描述

修改train.py文件

model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create

改为

# 修改的内容
# model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
model = Model(cfg or ckpt['model'].yaml, ch=1, nc=nc, anchors=hyp.get('anchors')).to(device)  # create

在这里插入图片描述

model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create

改为

# 修改的内容
# model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
model = Model(cfg, ch=1, nc=nc, anchors=hyp.get('anchors')).to(device)  # create

在这里插入图片描述

for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------callbacks.run('on_train_batch_start')ni = i + nb * epoch  # number integrated batches (since train start)imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0# Warmupif ni <= nw:xi = [0, nw]  # x interp# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())for j, x in enumerate(optimizer.param_groups):# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])if 'momentum' in x:x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

添加:

for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------callbacks.run('on_train_batch_start')ni = i + nb * epoch  # number integrated batches (since train start)# imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0# 添加的内容,目的是将训练集的图片变为单通道图片(黑白图片)imgs = imgs[:, 0, :, :].unsqueeze(1).to(device, non_blocking=True).float() / 255 # Warmupif ni <= nw:xi = [0, nw]  # x interp# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())for j, x in enumerate(optimizer.param_groups):# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])if 'momentum' in x:x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

在这里插入图片描述

剪枝后模型大小

  • 原来的yolo5n模型大小为3.5m,剪枝训练后的yolo5n模型大小为2.6m。

参考

[1] https://github.com/ultralytics/yolov5

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理
    专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/100325.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

elk安装篇之 Kibana安装

Kibana是一个开源的分析与可视化平台&#xff0c;设计出来用于和Elasticsearch一起使用的。你可以用kibana搜索、查看存放在Elasticsearch中的数据。是es的可视化客户端之一。 一&#xff1a;下载 https://www.elastic.co/cn/kibana 我的es是elasticsearch-7.10.2版本&#x…

Postern配置HTTP和HTTPS的步骤

Postern是一款强大的Android代理工具&#xff0c;它允许您在设备上配置全局代理来实现安全、隐私保护和自由上网。本文将详细介绍如何使用Postern在Android设备上配置HTTP和HTTPS代理&#xff0c;为您提供更便捷的上网体验。 步骤1&#xff1a;下载和安装Postern应用 首先&am…

upload-labs1-21关文件上传通关手册

upload-labs文件上传漏洞靶场 目录 upload-labs文件上传漏洞靶场第一关pass-01&#xff1a;第二关Pass-02第三关pass-03&#xff1a;第四关pass-04&#xff1a;第五关pass-05&#xff1a;第六关pass-06&#xff1a;第七关Pass-07第八关Pass-08第九关Pass-09第十关Pass-10第十一…

Android高通 8.1 老化apk打开摄像头花屏问题

1、最近由于公司VR 3D系统要做双Camera老化测试apk&#xff0c;同时老化4小时需要轮询切换二个摄像头&#xff0c;保证后面camera标定精度数据更准确。 2、一开始我尝试用之前方案移植过去然后同时打开双摄像头 突然发现花屏 如下图所示 3、于是一第一时间想到是不是分辨率不兼…

【vue2第十五章】VueRouter 路由配置(VueRouter)与使用 和 router-link与router-view标签使用

单页面应用 与 多页面应用 单页面应用&#xff08;Single-Page Application&#xff0c;SPA&#xff09;和多页面应用&#xff08;Multi-Page Application&#xff0c;MPA&#xff09;是 Web 应用程序的两种不同架构方式。它们在页面加载和交互方式上有所区别。 单页面应用&a…

【Hive SQL 每日一题】统计用户连续下单的日期区间

文章目录 测试数据需求说明需求实现 测试数据 create table test(user_id string,order_date string);INSERT INTO test(user_id, order_date) VALUES(101, 2021-09-21),(101, 2021-09-22),(101, 2021-09-23),(101, 2021-09-27),(101, 2021-09-28),(101, 2021-09-29),(101, 20…

Ubutnu允许ssh连接使用root与密码登录

文章目录 1. 修改sshd_config2. 设置root密码3. 重启SSH服务 1. 修改sshd_config 修改/etc/ssh/sshd_config文件&#xff0c;找到 #Authentication&#xff0c;将 PermitRootLogin 参数修改为 yes。如果 PermitRootLogin 参数被注释&#xff0c;请去掉首行的注释符号&#xff…

激光焊接汽车尼龙塑料配件透光率测试仪

激光塑性成型技术是近年来塑性加工界出现的一种新技术。通常塑料主要是通过加热加压依赖模具成型。这对于单品种、大批量生产是有效的&#xff1b;而对于各种不同形状的塑料制件则需要昂贵的模具‚装置也较庞大。 高度聚焦的激光束垂直照射在待变形的板料上‚由于塑料直接吸收激…

【MySQL】事务 详解

事务 详解 一. 为什么使用事务二. 事务的概念三. 使用四. 事务的特性原子性&#xff08;Atomicity&#xff09;一致性&#xff08;Consistency&#xff09;隔离性&#xff08;Isolation&#xff09;持久性&#xff08;Durability&#xff09; 五. 事务并发所带来的问题脏读问题…

MT4移动端应用指南:随时随地进行交易

如今&#xff0c;随着科技的不断发展&#xff0c;我们可以随时随地通过手机进行各种操作&#xff0c;包括进行金融交易。本文将为大家介绍一款优秀的金融交易软件——MT4&#xff08;可在mtw.so/6gwPno这点下&#xff09;移动端应用&#xff0c;并提供详细的使用指南&#xff0…

ubuntu 20.04 设置 authorized_keys 让 VS Code ssh 远程免密连接

相关文章 VSCode SSH 连接远程ubuntu Linux 主机 前言 前面记录了 VS Code 可以通过 SSH 远程连接 ubuntu Linux 主机&#xff0c;比如代码放在远程 ubuntu 主机上&#xff0c; windows 端 VS Code 通过 ssh 远程连接 ubuntu&#xff0c;并打开 远程主机上的 代码 如果不设置…

Linux命令之文件管理

Linux命令之文件管理 创建文件删除文件移动文件拷贝文件查看文件文件统计信息的查看文件内容的查看文件的权限文件权限的介绍和表示文件权限的改变 文件的类型 查找文件 创建文件 创建文件的话&#xff0c;一般使用touch命令 touch file1(文件名字)删除文件 删除文件的话&…