【100天精通Python】Day55:Python 数据分析_Pandas数据选取和常用操作

目录

Pandas数据选择和操作

1 选择列和行

2 过滤数据

3 添加、删除和修改数据

 4 数据排序


Pandas数据选择和操作

        Pandas是一个Python库,用于数据分析和操作,提供了丰富的功能来选择、过滤、添加、删除和修改数据。

1 选择列和行

Pandas 提供了多种方式来选择行和列,这取决于您希望获取的数据的类型和结构。

1.1 选择列

(1)使用列标签

使用列标签来选择一个或多个列。您可以将列标签传递给 DataFrame 的索引器,例如 []

(2)使用 .loc[] 方法

.loc[] 方法可以根据标签名称选择行和列。对于列选择,可以使用 : 选择所有行。

1.2 选择行

(1)使用行索引

使用行索引来选择一个或多个行。您可以使用 .loc[] 方法或 .iloc[] 方法。

(2)使用 .iloc[] 方法

.iloc[] 方法使用整数位置来选择行和列。它与 .loc[] 方法的不同之处在于,它使用整数索引而不是标签。

示例代码:

import pandas as pddata = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
df = pd.DataFrame(data)# 选择单个列
column_A = df['A']
print("单个列 'A':\n", column_A)
# 结果:
# 单个列 'A':
# 0    1
# 1    2
# 2    3
# Name: A, dtype: int64# 选择多个列
columns_AB = df[['A', 'B']]
print("多个列 'A' 和 'B':\n", columns_AB)
# 结果:
# 多个列 'A' 和 'B':
#    A  B
# 0  1  4
# 1  2  5
# 2  3  6# 使用 .loc[] 选择列
column_A_loc = df.loc[:, 'A']
print("使用 .loc[] 选择列 'A':\n", column_A_loc)
# 结果:
# 使用 .loc[] 选择列 'A':
# 0    1
# 1    2
# 2    3
# Name: A, dtype: int64# 选择多个列
columns_AB_loc = df.loc[:, ['A', 'B']]
print("使用 .loc[] 选择多个列 'A' 和 'B':\n", columns_AB_loc)
# 结果:
# 使用 .loc[] 选择多个列 'A' 和 'B':
#    A  B
# 0  1  4
# 1  2  5
# 2  3  6# 使用 .loc[] 选择单个行
row_0_loc = df.loc[0]
print("使用 .loc[] 选择单个行 (索引 0):\n", row_0_loc)
# 结果:
# 使用 .loc[] 选择单个行 (索引 0):
# A    1
# B    4
# C    7
# Name: 0, dtype: int64# 使用 .loc[] 选择多个行
rows_01_loc = df.loc[0:1]
print("使用 .loc[] 选择多个行 (索引 0 到 1):\n", rows_01_loc)
# 结果:
# 使用 .loc[] 选择多个行 (索引 0 到 1):
#    A  B  C
# 0  1  4  7
# 1  2  5  8# 使用 .iloc[] 选择单个行
row_0_iloc = df.iloc[0]
print("使用 .iloc[] 选择单个行 (整数位置 0):\n", row_0_iloc)
# 结果:
# 使用 .iloc[] 选择单个行 (整数位置 0):
# A    1
# B    4
# C    7
# Name: 0, dtype: int64# 使用 .iloc[] 选择多个行
rows_01_iloc = df.iloc[0:2]
print("使用 .iloc[] 选择多个行 (整数位置 0 到 1):\n", rows_01_iloc)
# 结果:
# 使用 .iloc[] 选择多个行 (整数位置 0 到 1):
#    A  B  C
# 0  1  4  7
# 1  2  5  8# 混合选择行和列
subset = df.loc[0:1, ['A', 'B']]
print("选择特定的行和列:\n", subset)
# 结果:
# 选择特定的行和列:
#    A  B
# 0  1  4
# 1  2  5

2 过滤数据

        在Pandas中,您可以使用不同的方法来过滤数据,根据特定条件筛选出满足条件的数据。以下是一些过滤数据的示例和方法:

2.1 基于条件的过滤

通过创建一个条件表达式,您可以选择DataFrame中满足条件的行。

import pandas as pddata = {'A': [1, 2, 3, 4, 5],'B': [10, 20, 30, 40, 50]}
df = pd.DataFrame(data)# 选择满足条件的行,例如 'A' 列大于 3 的行
filtered_data = df[df['A'] > 3]
print(filtered_data)

输出结果:

   A   B
3  4  40
4  5  50

2.2 使用多个条件

您可以组合多个条件,使用 &(与)和 |(或)等逻辑运算符。

# 选择同时满足多个条件的行,例如 'A' 列大于 2 且 'B' 列小于 30 的行
filtered_data = df[(df['A'] > 2) & (df['B'] < 30)]
print(filtered_data)

输出结果:

   A   B
2  3  30

2.3 使用 isin() 进行筛选

您可以使用 isin() 方法来筛选出匹配指定值的行。

# 选择 'A' 列中匹配特定值的行
filtered_data = df[df['A'].isin([2, 4])]
print(filtered_data)

 输出结果:

   A   B
1  2  20
3  4  40

2.4 使用字符串方法

如果您的数据包含字符串列,您可以使用字符串方法进行过滤。

data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],'Age': [25, 30, 35, 40]}
df = pd.DataFrame(data)# 选择包含特定字符串的行
filtered_data = df[df['Name'].str.contains('b', case=False)]
print(filtered_data)

输出结果:

   Name  Age
1   Bob   30

3 添加、删除和修改数据

3.1 添加数据

(1)添加行

        要向 DataFrame 添加新行,通常可以创建一个新的数据项,然后将其附加到 DataFrame。这可以使用 append 方法来完成。确保设置 ignore_index=True 来重置索引。

(2)添加列

        要添加新列,只需分配一个新的列名并提供相应的数据。这样可以在 DataFrame 中增加新的列,以便存储额外的信息。

3.2 删除数据

(1)删除行

        使用 drop 方法可以删除指定的行。您可以指定要删除的行的索引或标签,并使用 axis=0 参数来表示删除行。

(2)删除列

        要删除列,使用 drop 方法并设置 axis=1 参数,然后指定要删除的列名。这将允许您从 DataFrame 中移除不需要的列。

3.3 修改数据

(1)修改特定单元格的值

        要修改 DataFrame 中特定单元格的值,您可以使用 .loc[] 方法,通过指定行和列的标签或索引,来更新该单元格的值。

(2)更新多个值

        要批量更新数据,通常可以使用条件来选择要更新的行,然后赋予新的值。这可以帮助您一次性更新多个数据点,而不必一个一个手动修改。

3.4 代码示例

import pandas as pd# 创建一个示例 DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],'Age': [25, 30, 35]}
df = pd.DataFrame(data)# 添加新行
new_row = pd.Series({'Name': 'David', 'Age': 40})
df = df.append(new_row, ignore_index=True)
# 结果: 
#    Name  Age
# 0  Alice   25
# 1    Bob   30
# 2 Charlie   35
# 3  David   40# 添加新列
df['City'] = ['New York', 'Los Angeles', 'Chicago', 'Houston']
# 结果: 
#    Name  Age         City
# 0  Alice   25     New York
# 1    Bob   30  Los Angeles
# 2 Charlie   35      Chicago
# 3  David   40      Houston# 删除行
df = df.drop(2)  # 删除索引为2的行
# 结果: 
#    Name  Age         City
# 0  Alice   25     New York
# 1    Bob   30  Los Angeles
# 3  David   40      Houston# 删除列
df = df.drop('City', axis=1)  # 删除名为 'City' 的列
# 结果: 
#    Name  Age
# 0  Alice   25
# 1    Bob   30
# 3  David   40# 修改特定单元格的值
df.loc[1, 'Age'] = 31
# 结果: 
#    Name  Age
# 0  Alice   25
# 1    Bob   31
# 3  David   40# 更新多个值
df.loc[df['Age'] > 30, 'Age'] = 32  # 更新年龄大于30的行的年龄为32
# 结果: 
#    Name  Age
# 0  Alice   25
# 1    Bob   32
# 3  David   32# 输出最终结果
print(df)

 4 数据排序

        在 Pandas 中,您可以使用 sort_values() 方法对 DataFrame 中的数据进行排序。以下是有关如何进行列排序、包括升序和降序排序,以及如何按多列进行排序。

4.1  按列排序

要按列对数据进行排序,首先选择要排序的列名称,并使用 sort_values() 方法进行操作。默认情况下,数据将按升序排序。

  • 升序排序:使用 sort_values(by='列名'),其中 '列名' 是您要排序的列的名称。例如,df.sort_values(by='Age') 将按 'Age' 列的升序进行排序。

  • 降序排序:要按降序排序,可以使用 sort_values(by='列名', ascending=False),其中 '列名' 是您要排序的列的名称。例如,df.sort_values(by='Age', ascending=False) 将按 'Age' 列的降序进行排序。

4.2 按多列排序

        如果需要按多列进行排序,您可以通过提供列名称的列表来实现。首先,按列表中的第一个列名进行排序,然后按照列表中的下一个列名进行排序。

        例如,要按 'City' 列升序排序,然后按 'Age' 列升序排序,您可以使用 sort_values(by=['City', 'Age'])

4.3 重置索引

        请注意,排序后的 DataFrame 可能会保留之前的索引顺序。如果希望重新设置索引以匹配新的排序顺序,可以使用 reset_index(drop=True) 方法来删除旧的索引并创建一个新的整数索引。

4.4 代码示例 

import pandas as pd# 创建一个示例 DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],'Age': [25, 30, 35, 40],'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']}
df = pd.DataFrame(data)# 按列排序
# 默认按升序排序
df_sorted = df.sort_values(by='Age')
# 按照 'Age' 列的升序排序
print("按 'Age' 列的升序排序:\n", df_sorted)# 按照 'Age' 列的降序排序
df_sorted_desc = df.sort_values(by='Age', ascending=False)
print("\n按 'Age' 列的降序排序:\n", df_sorted_desc)# 按多列排序
# 先按 'City' 列升序排序,再按 'Age' 列升序排序
df_multi_sorted = df.sort_values(by=['City', 'Age'])
print("\n按 'City' 列和 'Age' 列的升序排序:\n", df_multi_sorted)# 恢复索引
df_multi_sorted = df_multi_sorted.reset_index(drop=True)
print("\n重置索引后的 DataFrame:\n", df_multi_sorted)

 这个示例演示了如何在 Pandas 中按列对数据进行排序,包括升序和降序排序以及按多列排序。您还可以使用 reset_index() 方法来重置排序后的 DataFrame 的索引。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/100676.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决readme.md文件中粘贴的图片放到GitHub上无法显示问题

问题原因 GitHub的README.md文件通常无法直接引用本地文件或图片&#xff0c;因为GitHub的README.md是在远程服务器上渲染和显示的&#xff0c;无法访问本地文件系统。 解决方案 要在GitHub的README.md中显示图片&#xff0c;你需要将图片上传到GitHub上&#xff0c;然后使用图…

qt day

#include "widget.h" #include "ui_widget.h" void Widget::my_slot() {} Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);this->setWindowIcon(QIcon(":/wodepeizhenshi.png"));//設置窗口的…

Matlab图像处理- 高斯低通滤波器

高斯低通滤波器 高斯低通滤波器是一种更平滑的一种滤波器&#xff0c;高斯低通滤波器完全没有振铃现象&#xff0c;且边缘平滑。 示例代码 利用输入图像&#xff0c;构建一个截止频率为30的高斯低通滤波器的透视图如下图所示。 M 2*size(I,1); %滤波器…

sqlmap --os-shell(写入木马获取getshell)

在存在sql注入处&#xff0c;可以使用--os-shell 对存在SQL注入处抓包&#xff0c;查看报错暴露出绝对路径 将POST包放入TXT文本中 启动sqlmap 读取TXT文件 python sqlmap.py -r C:\Users\南倾\Desktop\222.txt --os-shell 写入木马到文件中 echo "<?php eval($_R…

React + ASP.NET Core 项目笔记一:项目环境搭建(一)

不重要的目录标题 前提条件第一步&#xff1a;新建文件夹第二步&#xff1a;使用VS/ VS code/cmd 打开该文件夹第三步&#xff1a;安装依赖第四步&#xff1a;试运行react第五步&#xff1a;整理项目结构 前提条件 安装dotnet core sdk 安装Node.js npm 第一步&#xff1a;新…

ssprompt:一个LLM Prompt分发管理工具

阅读顺序 &#x1f31f;前言&#x1f514;ssprompt介绍命令介绍Metafile介绍版本依赖规则 &#x1f30a; PromptHubGitHub Token &#x1f680; Quick Install系统依赖pip安装Linux, macOS, Windows (WSL)Windows (Powershell) &#x1f6a9; Roadmap&#x1f30f; 项目交流讨论…

Spring学习笔记——3

Spring学习笔记——3 一、AOP简介1.1、AOP概述1.2、AOP思想的实现方案1.3、模拟AOP的基础代码1.4、AOP的相关概念 二、基于XML配置的AOP2.1、XML方式AOP快速入门2.2、XML方式AOP配置详解2.3、XML方式AOP原理剖析 三、基于注解配置AOP3.1、注解方式AOP基本使用3.2、注解方式AOP配…

react 基础知识(一)

1、 安装1 &#xff08;版本 react 18&#xff09; // 安装全局脚手架&#xff08;create-react-app基于webpackes6&#xff09; npm install -g create-react-app //使用脚手架搭建项目 create-react-app my-app // 打开目录 cd my-app // 运行项目 npm start2、初体验 impo…

【C#】泛型

【C#】泛型 泛型是什么 泛型是将类型作为参数传递给类、结构、接口和方法&#xff0c;这些参数相当于类型占位符。当我们定义类或方法时使用占位符代替变量类型&#xff0c;真正使用时再具体指定数据类型&#xff0c;以此来达到代码重用目的。 泛型特点 提高代码重用性一定…

1.初识爬虫

爬虫是批量模拟网络请求的程序&#xff0c;想百度谷歌这种搜索类网站本质上就是爬虫 使用爬虫的时候不应该对别人的网站有严重的影响&#xff0c;比如你爬的频率太高了&#xff0c;让人家的网站崩溃了。不应该爬取网页上显示不到的内容&#xff0c;比如有一个直播的网站&#…

点云从入门到精通技术详解100篇-伪雷达点云预测

前言 近年来,“自动驾驶”已经成为一个耳熟能详的词语,它是一种通过车载计 算实现无人驾驶的智能汽车系统。自动驾驶汽车依靠人工智能、视觉计算、视觉 传感器、控制设备和定位系统协同合作,让系统可以在无人主动操作的情况下, 自动安全地操作机动车辆。其中视觉传感器作…

MySQL误删数据 回滚

前言 生产环境数据库不允许删除表&#xff0c;可以将表修改成 XXX_to_delete 如果误删简单数据&#xff0c;可以考虑使用binlog恢复 一、查看命令 1.查看binlog是否开启 show variables like log_bin;切换到MySQL安装目录,查看mysqlbinlog日志文件 2.查看所有 binlog 日志…