ATC模型转换动态shape问题案例

ATC(Ascend Tensor Compiler)是异构计算架构CANN体系下的模型转换工具:它可以将开源框架的网络模型(如TensorFlow等)以及Ascend IR定义的单算子描述文件转换为昇腾AI处理器支持的离线模型;模型转换过程中,ATC会进行算子调度优化、权重数据重排、内存使用优化等具体操作,对原始的深度学习模型进行进一步的调优,从而满足部署场景下的高性能需求,使其能够高效执行在昇腾AI处理器上。

本期就分享几个关于ATC模型转换动态shape相关问题的典型案例,并给出原因分析及解决方法:

  1. 原始网络模型shape中存在不固定的维度值,模型转换未设置shape信息
  2. 动态BatchSize/动态分辨率/动态维度场景,只设置一个档位,模型转换失败 
  3. 使用动态batchsize参数转模型时,其他档位设置了-1,模型转换失败
  4. 使用动态分辨率参数转模型时,其他档位设置了-1,模型转换失败

01 原始网络模型shape中存在不固定的维度值,模型转换时未设置shape信息

问题现象描述

获取原始网络模型,执行如下命令进行模型转换:

atc --model=./resnet_shape.pb --framework=3 --output=./out/resnet_shape --soc_version=Ascend310

报错信息如下:

ATC run failed, Please check the detail log, Try 'atc --help' for more information
E10001: Value [-1] for parameter [Inputs] is invalid. Reason: maybe you should set input_shape to specify its shapeSolution: Try again with a valid argument.

原因分析

原始模型的shape存在不固定的维度值“-1”,模型输入样例如下,模型转换时,并未给不固定的维度值赋值。

解决措施

  • 设置固定shape。

    模型转换时,给不确定的维度值设置固定取值,示例如下: 

atc --model=./resnet_shape.pb --framework=3 --output=./out/resnet_shape --soc_version=Ascend310 --input_shape="Inputs:1,224,224,3"
  • 设置shape分档。

       与动态BatchSize参数配合使用,使转换后的模型进行推理时,可以每次处理多种数量的图片,示例如下:

atc --model=./resnet_shape.pb --framework=3 --output=./out/resnet_shape --soc_version=Ascend310 --input_shape="Inputs:-1,224,224,3" --dynamic_batch_size="1,2,4,8"

    这样转换后的离线模型,可以支持每次处理1、2、4、8张图片,而不用再进行4次模型转换。

  • 设置shape范围。

      模型转换时,将对应维度的值设置成一个范围,示例如下:

atc --model=./resnet_shape.pb --framework=3 --output=./out/resnet_shape --soc_version=Ascend910 --input_shape="Inputs:1~10,224,224,3"

      这样转换后的离线模型,可以支持每次处理1~10张范围内的图片。

02 动态BatchSize/动态分辨率/动态维度场景,只设置一个档位,模型转换失败

问题现象描述

此类问题我们以--dynamic_batch_size参数为例进行说明。

使用ATC工具进行模型转换时,使用--dynamic_batch_size参数转换支持多个BatchSize的模型,转换命令样例如下:

atc --model=./resnet50_tensorflow_1.7.pb --input_shape="Placeholder:-1,224,224,3" --dynamic_batch_size="2" --soc_version=Ascend310 --output=./out/test --framework=3

报错信息如下:

ATC run failed, Please check the detail log, Try 'atc --help' for more information
E10035: [--dynamic_batch_size], [--dynamic_image_size], or [--dynamic_dims] has [1] profiles, which is less than the minimum ([2]).Solution: Ensure that the number of profiles configured in [--dynamic_batch_size], [--dynamic_image_size], or [--dynamic_dims] is at least the minimum.TraceBack (most recent call last):[GraphOpt][Prepare] Failed to run multi-dims-process for graph[test].[FUNC:OptimizeAfterGraphNormalization][FILE:fe_graph_optimizer.cc][LINE:639]Call OptimizeAfterGraphNormalization failed, engine_name:AIcoreEngine, graph_name:test[FUNC:OptimizeAfterGraphNormalization][FILE:graph_optimize.cc][LINE:224]        build graph failed, graph id:0, ret:1343225857[FUNC:BuildModelWithGraphId][FILE:ge_generator.cc][LINE:1656]

原因分析

使用ATC工具进行模型转换,如果使用了--dynamic_batch_size或--dynamic_image_size或--dynamic_dims动态shape参数时,请确保设置的档位数取值范围为(1,100],既必须设置至少2个档位,最多支持100档配置。

上述模型转换命令,只设置了一个档位,不符合参数设置要求。

解决措施

重新设置模型转换时的档位信息,至少设置2个档位,档位之间使用英文逗号分隔。改后样例如下:

atc --model=./resnet50_tensorflow_1.7.pb --input_shape="Placeholder:-1,224,224,3" --dynamic_batch_size="2,4" --soc_version=Ascend310 --output=./out/test --framework=3

03 使用动态batchsize参数转模型时,其他档位设置了-1,模型转换失败

问题现象描述

使用ATC工具进行模型转换时,使用--dynamic_batch_size参数转换支持多个BatchSize的模型,转换命令样例如下:

atc --model=./resnet50_tensorflow_1.7.pb --input_shape="Placeholder:-1,-1,-1,3" --dynamic_batch_size="2,4,8" --soc_version=Ascend310 --output=./out/test --framework=3

报错信息如下:

ATC run failed, Please check the detail log, Try 'atc --help' for more information
E10018: Value [-1] for shape [1] is invalid. When [--dynamic_batch_size] is included, only batch size N can be –1 in [--input_shape].Possible Cause: When [--dynamic_batch_size] is included, only batch size N can be –1 in the shape.Solution: Try again with a valid [--input_shape] argument. Make sure that non-batch size axes are not –1.TraceBack (most recent call last):[--dynamic_batch_size] is included, but none of the nodes specified in [--input_shape] have a batch size equaling –1.

原因分析

使用ATC工具进行模型转换,如果使用了--dynamic_batch_size参数,shape中只有N支持设置为"-1",且只支持N在shape首位的场景,既shape的第一位设置为"-1"。如果N在非首位场景下,请使用--dynamic_dims参数进行设置。

上述模型转换命令,shape中N、H、W都设置了"-1",不符合参数设置要求。

解决措施

重新设置模型转换时的参数信息,只设置shape中的N为"-1"。改后样例如下:

atc --model=./resnet50_tensorflow_1.7.pb --input_shape="Placeholder:-1,224,224,3" --dynamic_batch_size="2,4,8" --soc_version=Ascend310 --output=./out/test --framework=3

04 使用动态分辨率参数转模型时,其他档位设置了-1,模型转换失败

问题现象描述

使用ATC工具进行模型转换时,使用--dynamic_image_size参数转换支持多个分辨率的模型,转换命令样例如下:

atc --model=./resnet50_tensorflow_1.7.pb --input_shape="Placeholder:-1,-1,-1,3" --dynamic_image_size="448,448;224,224" --soc_version=Ascend310 --output=./out/test --framework=3

报错信息如下:

ATC run failed, Please check the detail log, Try 'atc --help' for more information
E10019: When [--dynamic_image_size] is included, only the height and width axes can be –1 in [--input_shape].Possible Cause: When [--dynamic_image_size] is included, only the height and width axes can be –1 in the shape.Solution: Try again with a valid [--input_shape] argument. Make sure that axes other than height and width are not –1.

原因分析

使用ATC工具进行模型转换,如果使用了--dynamic_image_size参数,shape中只有H、W支持设置为"-1",且只支持format为NCHW、NHWC格式;其他format场景,设置分辨率请使用--dynamic_dims参数。上述模型转换命令,shape中N、H、W都设置了"-1",不符合参数设置要求。

解决措施

重新设置模型转换时的参数信息,只设置shape中的H,W为"-1"。改后样例如下:

atc --model=./resnet50_tensorflow_1.7.pb --input_shape="Placeholder:1,-1,-1,3" --dynamic_image_size="448,448;224,224" --soc_version=Ascend310 --output=./out/test --framework=3

05 更多介绍

[1]昇腾文档中心:https://www.hiascend.com/zh/document

[2]昇腾社区在线课程:https://www.hiascend.com/zh/edu/courses

[3]昇腾论坛:https://www.hiascend.com/forum

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/100969.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

异地远程访问内网BUG管理系统【Cpolar内网穿透】

文章目录 前言1. 本地安装配置BUG管理系统2. 内网穿透2.1 安装cpolar内网穿透2.2 创建隧道映射本地服务3. 测试公网远程访问4. 配置固定二级子域名4.1 保留一个二级子域名5.1 配置二级子域名6. 使用固定二级子域名远程 前言 BUG管理软件,作为软件测试工程师的必备工具之一。在…

16 Linux之JavaEE定制篇-搭建JavaEE环境

16 Linux之JavaEE定制篇-搭建JavaEE环境 文章目录 16 Linux之JavaEE定制篇-搭建JavaEE环境16.1 概述16.2 安装JDK16.3 安装tomcat16.4 安装idea2020*16.5 安装mysql5.7 学习视频来自于B站【小白入门 通俗易懂】2021韩顺平 一周学会Linux。可能会用到的资料有如下所示&#xff0…

腾讯云免费SSL证书申请流程_2023更新教程

2023腾讯云免费SSL证书申请流程,一个腾讯云账号可以申请50张免费SSL证书,免费SSL证书为DV证书,仅支持单一域名,申请腾讯云免费SSL证书3分钟即可申请成功,免费SSL证书品牌为TrustAsia亚洲诚信,腾讯云百科分享…

linux jar包class热部署 工具 arthas安装及使用

在不改变类、方法 的前提下,在方法中对业务逻辑做处理 或 打日志等情况下使用。 建议线上日志调试时使用: arthas安装 1. 下载文件 arthas-packaging-3.7.1-bin.zip https://arthas.aliyun.com 2. 服务器安装arthas 2.1 服务器指定目录下创建目录 c…

DockerCompose部署es和kibana

DockerCompose文件 version: 3.1 services:elasticsearch:image: elasticsearch:7.13.3container_name: elasticsearchprivileged: trueports:- "9200:9200"- "9300:9300"environment:- ES_JAVA_OPTS-Xms128m -Xmx1024m #设置使用jvm内存大小- cluster.na…

3种等待方式,让你学会Selenium设置自动化等待测试脚本!

一、Selenium脚本为什么要设置等待方式?——即他的应用背景到底是什么 应用Selenium时,浏览器加载过程中无法立即显示对应的页面元素从而无法进行元素操作,需设置一定的等待时间去等待元素的出现。(简单来说,就是设置…

swagger---接口文档管理生成管理工具

Swagger–接口生成工具 使用Swagger你只需要按照它的规范去定义接口及接口相关的信息,再通过Swagger衍生出来的一系列项目和工具, 就可以做到生成各种格式的接口文档,以及在线接口调试页面等等。 官网: https://lswagger.io/knife4j是为Jav…

Java基础知识点汇总

一、Java基础知识点整体框架 详细知识点见链接资源,注:框架是用Xmind App完成,查看需下载。 二、基础知识各部分概况 2.1 认识Java 2.2 数据类型和变量 2.3 运算符 2.4 程序逻辑控制 2.5 方法的使用 2.6 数组的定义和使用 2.7 类和对象 2.8 …

生态项目|Typus如何用Sui特性制作动态NFT为DeFi赋能

对于许多人来说,可能因其涉及的期权、认购和价差在内的DeFi而显得晦涩难懂,但Typus Finance找到了一种通过动态NFT使体验更加丰富的方式。Typus NFT系列的Tails为用户带来一个外观逐渐演变并在平台上提升活动水平时获得新特权的角色。 Typus表示&#x…

智慧工厂的未来:视频+数字孪生与工业4.0的融合

视频数字孪生技术在智慧工厂项目中具有广泛的应用,为生产制造提供了前所未有的机会和优势。下面将探讨数字孪生技术在智慧工厂项目中的多个应用场景。 数字孪生技术的首要应用之一是生产流程优化。通过将现实世界的工厂映射到数字孪生模型中,制造…

java八股文面试[数据库]——行溢出

行记录格式 1) 行格式分类 表的行格式决定了它的行是如何物理存储的,这反过来又会影响查询和DML操作的性能。如果在单个page页中容纳更多行,查询和索引查找可以更快地工作,缓冲池中所需的内存更少,写入更新时所需的I/O更少。 I…

行业追踪,2023-09-06

自动复盘 2023-09-06 凡所有相,皆是虚妄。若见诸相非相,即见如来。 k 线图是最好的老师,每天持续发布板块的rps排名,追踪板块,板块来开仓,板块去清仓,丢弃自以为是的想法,板块去留让…