【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER(一)

文章目录

  • TASK系列解析文章
  • 前言
  • PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER功能介绍
  • PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER相关配置
  • PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER流程
    • 确定优化变量
    • 定义目标函数
    • 定义约束
    • Process
      • SetUpStatesAndBounds
      • OptimizeByQP
      • CheckSpeedLimitFeasibility
      • SmoothPathCurvature
      • SmoothSpeedLimit
      • OptimizeByNLP
  • 参考

TASK系列解析文章

1.【Apollo学习笔记】——规划模块TASK之LANE_CHANGE_DECIDER
2.【Apollo学习笔记】——规划模块TASK之PATH_REUSE_DECIDER
3.【Apollo学习笔记】——规划模块TASK之PATH_BORROW_DECIDER
4.【Apollo学习笔记】——规划模块TASK之PATH_BOUNDS_DECIDER
5.【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_PATH_OPTIMIZER
6.【Apollo学习笔记】——规划模块TASK之PATH_ASSESSMENT_DECIDER
7.【Apollo学习笔记】——规划模块TASK之PATH_DECIDER
8.【Apollo学习笔记】——规划模块TASK之RULE_BASED_STOP_DECIDER
9.【Apollo学习笔记】——规划模块TASK之SPEED_BOUNDS_PRIORI_DECIDER&&SPEED_BOUNDS_FINAL_DECIDER
10.【Apollo学习笔记】——规划模块TASK之SPEED_HEURISTIC_OPTIMIZER
11.【Apollo学习笔记】——规划模块TASK之SPEED_DECIDER
12.【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_SPEED_OPTIMIZER
13.【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER(一)
14.【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER(二)

前言

在Apollo星火计划学习笔记——Apollo路径规划算法原理与实践与【Apollo学习笔记】——Planning模块讲到……Stage::Process的PlanOnReferenceLine函数会依次调用task_list中的TASK,本文将会继续以LaneFollow为例依次介绍其中的TASK部分究竟做了哪些工作。由于个人能力所限,文章可能有纰漏的地方,还请批评斧正。

modules/planning/conf/scenario/lane_follow_config.pb.txt配置文件中,我们可以看到LaneFollow所需要执行的所有task。

stage_config: {stage_type: LANE_FOLLOW_DEFAULT_STAGEenabled: truetask_type: LANE_CHANGE_DECIDERtask_type: PATH_REUSE_DECIDERtask_type: PATH_LANE_BORROW_DECIDERtask_type: PATH_BOUNDS_DECIDERtask_type: PIECEWISE_JERK_PATH_OPTIMIZERtask_type: PATH_ASSESSMENT_DECIDERtask_type: PATH_DECIDERtask_type: RULE_BASED_STOP_DECIDERtask_type: SPEED_BOUNDS_PRIORI_DECIDERtask_type: SPEED_HEURISTIC_OPTIMIZERtask_type: SPEED_DECIDERtask_type: SPEED_BOUNDS_FINAL_DECIDERtask_type: PIECEWISE_JERK_SPEED_OPTIMIZER# task_type: PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZERtask_type: RSS_DECIDER

本文将继续介绍LaneFollow的第14个TASK——PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER

PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER功能介绍

产生平滑速度规划曲线
在这里插入图片描述在这里插入图片描述
根据ST图的可行驶区域,优化出一条平滑的速度曲线。满足一阶导、二阶导平滑(速度加速度平滑);满足道路限速;满足车辆动力学约束。

PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER相关配置

modules/planning/conf/planning_config.pb.txt

default_task_config: {task_type: PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZERpiecewise_jerk_nonlinear_speed_optimizer_config {acc_weight: 2.0jerk_weight: 3.0lat_acc_weight: 1000.0s_potential_weight: 0.05ref_v_weight: 5.0ref_s_weight: 100.0soft_s_bound_weight: 1e6use_warm_start: true}
}

PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER流程

上文我们介绍了基于二次规划的速度规划方法【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_SPEED_OPTIMIZER

首先,来看看基于二次规划的速度规划方法存在的问题。
m i n f = ∑ i = 0 n − 1 w s − r e f ( s i − s i − r e f ) 2 + w d s − r e f ( s ˙ i − s ˙ r e f ) 2 + p i s ˙ i 2 + w d d s s ¨ i 2 + ∑ i = 0 n − 2 w d d d s s ′ ′ ′ i → i + 1 2 + w e n d − s ( s n − 1 − s e n d ) 2 + w e n d − d s ( s n − 1 ˙ − s e n d ˙ ) 2 + w e n d − d d s ( s n − 1 ¨ − s e n d ¨ ) 2 \begin{aligned} minf&=\sum_{i=0}^{n-1}w_{s-ref}(s_i-s_{i-ref})^2+w_{ds-ref}(\dot{s}_i-\dot s_{ref})^2+p_i\dot{s}_i^2+w_{dds}\ddot{s}_i^2+\sum_{\color{red}i=0}^{\color{red}n-2}w_{ddds}{s^{'''}}_{i \to i + 1}^2\\ & +w_{end-s}(s_{n-1}-s_{end})^2+w_{end-ds}(\dot{s_{n-1}}-\dot{s_{end}})^2+w_{end-dds}(\ddot{s_{n-1}}-\ddot{s_{end}})^2 \end{aligned} minf=i=0n1wsref(sisiref)2+wdsref(s˙is˙ref)2+pis˙i2+wddss¨i2+i=0n2wdddss′′′ii+12+wends(sn1send)2+wendds(sn1˙send˙)2+wenddds(sn1¨send¨)2
在这里插入图片描述

// modules/planning/tasks/optimizers/piecewise_jerk_speed/piecewise_jerk_speed_optimizer.cc// get path_sSpeedPoint sp;// 依据当前时间估计reference_speed_data.EvaluateByTime(curr_t, &sp);const double path_s = sp.s();x_ref.emplace_back(path_s);// get curvaturePathPoint path_point = path_data.GetPathPointWithPathS(path_s);penalty_dx.push_back(std::fabs(path_point.kappa()) *config.kappa_penalty_weight());

基于二次规划的速度规划中, p i p_i pi是曲率关于时间 t t t的函数(从代码中可以看到曲率 κ \kappa κ是依据时间 t t t估计出的点计算的),但实际上路径的曲率是与 s s s相关的。二次规划在原先动态规划出来的粗糙ST曲线上将关于 s s s的曲率惩罚转化为关于 t t t的曲率惩罚,如此,当二次规划曲线与动态规划曲线差别不大,规划出来基本一致;若规划差别大,则会差别很大。就如图所示,规划出来的区间差别较大。限速/曲率的函数是关于 s s s的函数,而 s s s是我们要求的优化量,只能通过动态规划进行转化,如此就会使得二次规划的速度约束不精确。

为了使得限速更加精细,Apollo提出了一种基于非线性规划的速度规划方法。

非线性规划(Nonlinear Programming,简称NLP)是指在目标函数或者约束条件中包含非线性函数的优化问题。目标函数或者约束条件都可以是非线性/非凸的,但是需要满足二阶连续可导。以下是非线性规划的标准形式:

min ⁡ x ∈ R n f ( x ) s.t. g L ≤ g ( x ) ≤ g U x L ≤ x ≤ x U , x ∈ R n \begin{aligned} \min_{x\in\mathbb{R}^{n}}&& f(x) \\ \text{s.t.}&& g^{L}\leq g(x)\leq g^{U} \\ &&x^{L}\leq x\leq x^{U}, \\ &&x\in\mathbb{R}^{n} \end{aligned} xRnmins.t.f(x)gLg(x)gUxLxxU,xRn

g L {g^L} gL g U {g^U} gU是约束函数的上界和下界, x L {x^L} xL x U {x^U} xU是优化变量的上界和下界。


确定优化变量

基于非线性规划的速度规划步骤与之前规划步骤基本一致。
x = ( s 0 , s 1 , … , s n − 1 , s ˙ 0 , s ˙ 1 , … , s ˙ n − 1 , s ¨ 0 , s ¨ 1 , … , s ¨ n − 1 , s _ s l a c k _ u p p e r 0 , s _ s l a c k _ l o w e r 1 , … , s _ s l a c k _ l o w e r n − 1 , s _ s l a c k _ u p p e r 0 , s _ s l a c k _ u p p e r 1 , … , s _ s l a c k _ u p p e r n − 1 ) \begin{aligned}x=\begin{pmatrix}s_0,s_1,\ldots,s_{n-1},\\\dot{s}_0,\dot{s}_1,\ldots,\dot{s}_{n-1},\\\ddot{s}_0,\ddot{s}_1,\ldots,\ddot{s}_{n-1},\\s\_slack\_upper_0,s\_slack\_lower_1,\ldots,s\_slack\_lower_{n-1},\\s\_slack\_upper_0,s\_slack\_upper_1,\ldots,s\_slack\_upper_{n-1}\end{pmatrix}\end{aligned} x= s0,s1,,sn1,s˙0,s˙1,,s˙n1,s¨0,s¨1,,s¨n1,s_slack_upper0,s_slack_lower1,,s_slack_lowern1,s_slack_upper0,s_slack_upper1,,s_slack_uppern1

采样方式:等间隔的时间采样。除此之外非线性规划中如果打开了软约束FLAGS_use_soft_bound_in_nonlinear_speed_opt,还会有松弛变量 s _ s l a c k _ l o w e r s\_slack\_lower s_slack_lower s _ s l a c k _ u p p e r s\_slack\_upper s_slack_upper,防止求解失败。

定义目标函数

m i n f = ∑ i = 0 n − 1 w s − r e f ( s i − s − r e f i ) 2 + w v − r e f ( s ˙ i − v − r e f ) 2 + w a s ¨ i 2 + ∑ i = 0 n − 2 w j ( s ¨ i + 1 − s ¨ i Δ t ) 2 + ∑ i = 0 n − 1 w l a t _ a c c l a t _ a c c i 2 + w s o f t s _ s l a c k _ l o w e r i + w s o f t s _ s l a c k _ u p p e r i + w t a r g e t − s ( s − s t a r g e t ) 2 + w t a r g e t − v ( v − v t a r g e t ) 2 + w t a r g e t − a ( a − a t a r g e t ) 2 \begin{aligned}minf=&\sum_{i=0}^{n-1}w_{s-ref}(s_i-s_-ref_i)^2+w_{v-ref}(\dot{s}_i-v_-ref)^2+w_a\ddot{s}_i^2+\sum_{i=0}^{n-2}w_j(\frac{\ddot{s}_{i+1}-\ddot{s}_i}{\Delta t})^2\\&+\sum_{i=0}^{n-1}w_{lat\_acc}lat\_acc_i^2+w_{soft}s\_slack\_lower_i+w_{soft}s\_slack\_upper_i\\&+w_{target-s}(s-s_{target})^2+w_{target-v}(v-v_{target})^2+w_{target-a}(a-a_{target})^2 \end{aligned} minf=i=0n1wsref(sisrefi)2+wvref(s˙ivref)2+was¨i2+i=0n2wj(Δts¨i+1s¨i)2+i=0n1wlat_acclat_acci2+wsofts_slack_loweri+wsofts_slack_upperi+wtargets(sstarget)2+wtargetv(vvtarget)2+wtargeta(aatarget)2
目标函数与二次规划的目标函数差不多,增加了横向加速度的代价值以及松弛变量 w s o f t s _ s l a c k _ l o w e r w_{soft}s\_slack\_lower wsofts_slack_lower w s o f t s _ s l a c k _ u p p e r w_{soft}s\_slack\_upper wsofts_slack_upper

横向加速度的计算方式:
l a t _ a c c i = s i 2 ⋅ κ ( s i ) lat\_acc_i=s^2_i\cdot\kappa(s_i) lat_acci=si2κ(si)

定义约束

接下来是约束条件:
对于变量 x x x的边界约束,需满足:

  • s i ∈ ( s min ⁡ i , s max ⁡ i ) {s_i} \in (s_{\min }^i,s_{\max }^i) si(smini,smaxi)
  • s i ′ ∈ ( s m i n i ′ ( t ) , s m a x i ′ ( t ) ) s_{i}^{\prime}\in\left(s_{min}^{i}{}^{\prime}(t),s_{max}^{i}{}^{\prime}(t)\right) si(smini(t),smaxi(t))
  • s i ′ ′ ∈ ( s m i n i ′ ′ ( t ) , s m a x i ′ ′ ( t ) ) s_{i}^{\prime\prime}\in\left(s_{min}^{i}{}^{\prime\prime}(t),s_{max}^{i}{}^{\prime\prime}(t)\right) si′′(smini′′(t),smaxi′′(t))
  • s _ s l a c k _ l o w e r i ∈ ( s _ s l a c k _ l o w e r min ⁡ i , s _ s l a c k _ l o w e r max ⁡ i ) {s\_slack\_lower_i} \in ({s\_slack\_lower}_{\min }^i,{s\_slack\_lower}_{\max }^i) s_slack_loweri(s_slack_lowermini,s_slack_lowermaxi)
  • s _ s l a c k _ u p p e r i ∈ ( s _ s l a c k _ u p p e r min ⁡ i , s _ s l a c k _ u p p e r max ⁡ i ) {s\_slack\_upper_i} \in ({s\_slack\_upper}_{\min }^i,{s\_slack\_upper}_{\max }^i) s_slack_upperi(s_slack_uppermini,s_slack_uppermaxi)

对于 g ( x ) g(x) g(x)的约束,需满足:

  • 规划的速度要一直往前走 s i ≤ s i + 1 {s_i} \le {s_{i + 1}} sisi+1
  • 加加速度不能超过定义的极限值 j e r k min ⁡ ≤ s ¨ i + 1 − s ¨ i Δ t ≤ j e r k max ⁡ jer{k_{\min }} \le \frac{{{{\ddot s}_{i{\rm{ + 1}}}} - {{\ddot s}_i}}}{{\Delta t}} \le jer{k_{\max }} jerkminΔts¨i+1s¨ijerkmax
  • 速度满足路径上的限速 s ˙ i ≤ s p e e d _ l i m i t ( s i ) {\dot s_i} \le speed\_limit({s_i}) s˙ispeed_limit(si)。这部分在SmoothSpeedLimit有具体介绍。

为了避免求解的失败,二次规划中对位置的硬约束,在非线性规划中转为了对位置的软约束。提升求解的精度。
s i − s _ s o f t _ l o w e r i + s _ s l a c k _ l o w e r i ≥ 0 s i − s _ s o f t _ u p p e r i − s _ s l a c k _ u p p e r i ≤ 0 \begin{aligned}s_i-s\_soft\_lower_i+s\_slack\_lower_i\geq0\\s_i-s\_soft\_upper_i-s\_slack\_upper_i\leq0\end{aligned} sis_soft_loweri+s_slack_loweri0sis_soft_upperis_slack_upperi0

同时还需满足基本的物理学原理,即连续性,和二次规划相比,少了加速度?:

s i + 1 ′ = s i ′ + ∫ 0 Δ t s ′ ′ ( t ) d t = s i ′ + s i ′ ′ ∗ Δ t + 1 2 ∗ s i → i + 1 ′ ′ ′ ∗ Δ t 2 = s i ′ + 1 2 ∗ s i ′ ′ ∗ Δ t + 1 2 ∗ s i + 1 ′ ′ ∗ Δ t s i + 1 = s i + ∫ 0 Δ t s ′ ( t ) d t = s i + s i ′ ∗ Δ t + 1 2 ∗ s i ′ ′ ∗ Δ t 2 + 1 6 ∗ s i → i + 1 ′ ′ ′ ∗ Δ t 3 = s i + s i ′ ∗ Δ t + 1 3 ∗ s i ′ ′ ∗ Δ t 2 + 1 6 ∗ s i + 1 ′ ′ ∗ Δ t 2 \begin{aligned} s_{i+1}^{\prime} &=s_i^{\prime}+\int_0^{\Delta t}\boldsymbol{s''}(t)dt=s_i^{\prime}+s_i^{\prime\prime}*\Delta t+\frac12*s_{i\to i+1}^{\prime\prime\prime}*\Delta t^2 \\ &= s_i^{\prime}+\frac12*s_i^{\prime\prime}*\Delta t+\frac12*s_{i+1}^{\prime\prime}*\Delta t\\ s_{i+1} &=s_i+\int_0^{\Delta t}\boldsymbol{s'}(t)dt \\ &=s_i+s_i^{\prime}*\Delta t+\frac12*s_i^{\prime\prime}*\Delta t^2+\frac16*s_{i\to i+1}^{\prime\prime\prime}*\Delta t^3\\ &=s_i+s_i^{\prime}*\Delta t+\frac13*s_i^{\prime\prime}*\Delta t^2+\frac16*s_{i+1}^{\prime\prime}*\Delta t^2 \end{aligned} si+1si+1=si+0Δts′′(t)dt=si+si′′Δt+21sii+1′′′Δt2=si+21si′′Δt+21si+1′′Δt=si+0Δts(t)dt=si+siΔt+21si′′Δt2+61sii+1′′′Δt3=si+siΔt+31si′′Δt2+61si+1′′Δt2


Process

PiecewiseJerkSpeedNonlinearOptimizer 继承自基类SpeedOptimizer. 因此,当task::Execute()被执行时, PiecewiseJerkSpeedNonlinearOptimizer中的函数Process()将会执行具体流程。

流程大致如下:

  • Input.输入部分包括PathData以及起始的TrajectoryPoint
  • Process.
    • Snaity Check. 这样可以确保speed_data不为空,并且speed Optimizer不会接收到空数据.
    • const auto problem_setups_status = SetUpStatesAndBounds(path_data, *speed_data); 初始化QP问题。若失败,则会清除speed_data中的数据。
    • const auto qp_smooth_status = OptimizeByQP(speed_data, &distance, &velocity, &acceleration); 求解QP问题,并获得distance\velocity\acceleration等数据。 若失败,则会清除speed_data中的数据。这部分用以计算非线性问题的初始解,对动态规划的结果进行二次规划平滑
    • const bool speed_limit_check_status = CheckSpeedLimitFeasibility();
      检查速度限制。接着或执行以下四个步骤:
      1)Smooth Path Curvature 2)SmoothSpeedLimit 3)Optimize By NLP 4)Record speed_constraint
    • 将 s/t/v/a/jerk等信息添加进 speed_data 并且补零防止fallback。
  • Output.输出SpeedData, 包括轨迹的s/t/v/a/jerk。

SetUpStatesAndBounds

SetUpStatesAndBounds主要完成对 s i n i t , s ˙ i n i t , s ¨ i n i t s_{init},\dot s_{init},\ddot s_{init} sinit,s˙init,s¨init的初始化设置;初始化设置 s ˙ , s ¨ , s ′ ′ ′ \dot s,\ddot s, s^{'''} s˙,s¨,s′′′的boundary;根据FLAGS_use_soft_bound_in_nonlinear_speed_opt判断是否启用软约束;若启用,则依据不同类型的boundary,更新s_soft_bounds_和s_bounds_;若不启用,同样依据不同类型的boundary,更新s_bounds_;最后获取speed_limit_和cruise_speed_。

Status PiecewiseJerkSpeedNonlinearOptimizer::SetUpStatesAndBounds(const PathData& path_data, const SpeedData& speed_data) {// Set st problem dimensionsconst StGraphData& st_graph_data =*reference_line_info_->mutable_st_graph_data();// TODO(Jinyun): move to confsdelta_t_ = 0.1;total_length_ = st_graph_data.path_length();total_time_ = st_graph_data.total_time_by_conf();num_of_knots_ = static_cast<int>(total_time_ / delta_t_) + 1;// Set initial valuess_init_ = 0.0;s_dot_init_ = st_graph_data.init_point().v();s_ddot_init_ = st_graph_data.init_point().a();// Set s_dot bounarys_dot_max_ = std::fmax(FLAGS_planning_upper_speed_limit,st_graph_data.init_point().v());// Set s_ddot boundaryconst auto& veh_param =common::VehicleConfigHelper::GetConfig().vehicle_param();s_ddot_max_ = veh_param.max_acceleration();s_ddot_min_ = -1.0 * std::abs(veh_param.max_deceleration());// Set s_dddot boundary// TODO(Jinyun): allow the setting of jerk_lower_bound and move jerk config to// a better places_dddot_min_ = -std::abs(FLAGS_longitudinal_jerk_lower_bound);s_dddot_max_ = FLAGS_longitudinal_jerk_upper_bound;// Set s boundary// 若启用软约束if (FLAGS_use_soft_bound_in_nonlinear_speed_opt) {s_bounds_.clear();s_soft_bounds_.clear();// TODO(Jinyun): move to confs// 遍历每一段segmentfor (int i = 0; i < num_of_knots_; ++i) {double curr_t = i * delta_t_;double s_lower_bound = 0.0;double s_upper_bound = total_length_;double s_soft_lower_bound = 0.0;double s_soft_upper_bound = total_length_;// 遍历每一个STBoundaryfor (const STBoundary* boundary : st_graph_data.st_boundaries()) {double s_lower = 0.0;double s_upper = 0.0;// 获取未被阻塞的s的范围,即s_lower和s_upperif (!boundary->GetUnblockSRange(curr_t, &s_upper, &s_lower)) {continue;}SpeedPoint sp;// 根据不同的类型,更新boundswitch (boundary->boundary_type()) {case STBoundary::BoundaryType::STOP:case STBoundary::BoundaryType::YIELD:s_upper_bound = std::fmin(s_upper_bound, s_upper);s_soft_upper_bound = std::fmin(s_soft_upper_bound, s_upper);break;case STBoundary::BoundaryType::FOLLOW:s_upper_bound =// FLAGS_follow_min_distance: min follow distance for vehicles/bicycles/moving objects; 3.0std::fmin(s_upper_bound, s_upper - FLAGS_follow_min_distance);// 依据时间估计出SpeedPointif (!speed_data.EvaluateByTime(curr_t, &sp)) {const std::string msg ="rough speed profile estimation for soft follow fence failed";AERROR << msg;return Status(ErrorCode::PLANNING_ERROR, msg);}s_soft_upper_bound =std::fmin(s_soft_upper_bound,s_upper - FLAGS_follow_min_distance -// FLAGS_follow_time_buffer: time buffer in second to calculate the following distance// 2.5std::min(7.0, FLAGS_follow_time_buffer * sp.v()));break;case STBoundary::BoundaryType::OVERTAKE:s_lower_bound = std::fmax(s_lower_bound, s_lower);s_soft_lower_bound = std::fmax(s_soft_lower_bound, s_lower + 10.0);break;default:break;}}if (s_lower_bound > s_upper_bound) {const std::string msg ="s_lower_bound larger than s_upper_bound on STGraph";AERROR << msg;return Status(ErrorCode::PLANNING_ERROR, msg);}s_soft_bounds_.emplace_back(s_soft_lower_bound, s_soft_upper_bound);s_bounds_.emplace_back(s_lower_bound, s_upper_bound);}} else {s_bounds_.clear();// TODO(Jinyun): move to confsfor (int i = 0; i < num_of_knots_; ++i) {double curr_t = i * delta_t_;double s_lower_bound = 0.0;double s_upper_bound = total_length_;for (const STBoundary* boundary : st_graph_data.st_boundaries()) {double s_lower = 0.0;double s_upper = 0.0;if (!boundary->GetUnblockSRange(curr_t, &s_upper, &s_lower)) {continue;}SpeedPoint sp;switch (boundary->boundary_type()) {case STBoundary::BoundaryType::STOP:case STBoundary::BoundaryType::YIELD:s_upper_bound = std::fmin(s_upper_bound, s_upper);break;case STBoundary::BoundaryType::FOLLOW:s_upper_bound = std::fmin(s_upper_bound, s_upper - 8.0);break;case STBoundary::BoundaryType::OVERTAKE:s_lower_bound = std::fmax(s_lower_bound, s_lower);break;default:break;}}if (s_lower_bound > s_upper_bound) {const std::string msg ="s_lower_bound larger than s_upper_bound on STGraph";AERROR << msg;return Status(ErrorCode::PLANNING_ERROR, msg);}s_bounds_.emplace_back(s_lower_bound, s_upper_bound);}}// 获取speed_limit_和cruise_speed_speed_limit_ = st_graph_data.speed_limit();cruise_speed_ = reference_line_info_->GetCruiseSpeed();return Status::OK();
}

OptimizeByQP


这部分用以计算非线性问题的初始解,对动态规划的结果进行二次规划平滑。Apollo同样用分段多项式二次规划的求解方式,得到符合约束的速度平滑曲线,作为非线性规划的初值。

目标函数
m i n f = ∑ i = 0 n − 1 w s ( s i − s i − r e f ) 2 + ∑ i = 0 n − 1 w d d s s ¨ i 2 + ∑ i = 0 n − 2 w d d d s s ′ ′ ′ i → i + 1 2 \begin{aligned} minf&=\sum_{i=0}^{n-1}w_s(s_i-s_{i-ref})^2+\sum_{i=0}^{n-1}w_{dds}\ddot s_{i}^2+\sum_{i=0}^{n-2}w_{ddds}{s^{'''}}_{i \to i + 1}^2 \end{aligned} minf=i=0n1ws(sisiref)2+i=0n1wddss¨i2+i=0n2wdddss′′′ii+12

约束
主车必须在道路边界内,同时不能和障碍物有碰撞 s i ∈ ( s min ⁡ i , s max ⁡ i ) {s_i} \in (s_{\min }^i,s_{\max }^i) si(smini,smaxi)根据当前状态,主车的横向速度/加速度/加加速度有特定运动学限制
s i ′ ∈ ( s m i n i ′ ( t ) , s m a x i ′ ( t ) ) , s i ′ ′ ∈ ( s m i n i ′ ′ ( t ) , s m a x i ′ ′ ( t ) ) , s i ′ ′ ′ ∈ ( s m i n i ′ ′ ′ ( t ) , s m a x i ′ ′ ′ ( t ) ) s_{i}^{\prime}\in\left(s_{min}^{i}{}^{\prime}(t),s_{max}^{i}{}^{\prime}(t)\right)\text{,}s_{i}^{\prime\prime}\in\left(s_{min}^{i}{}^{\prime\prime}(t),s_{max}^{i}{}^{\prime\prime}(t)\right)\text{,}s_{i}^{\prime\prime\prime}\in\left(s_{min}^{i}{}^{\prime\prime\prime}(t),s_{max}^{i}{}^{\prime\prime\prime}(t)\right) si(smini(t),smaxi(t)),si′′(smini′′(t),smaxi′′(t)),si′′′(smini′′′(t),smaxi′′′(t))
连续性约束
s i + 1 ′ ′ = s i ′ ′ + ∫ 0 Δ t s i → i + 1 ′ ′ ′ d t = s i ′ ′ + s i → i + 1 ′ ′ ′ ∗ Δ t s i + 1 ′ = s i ′ + ∫ 0 Δ t s ′ ′ ( t ) d t = s i ′ + s i ′ ′ ∗ Δ t + 1 2 ∗ s i → i + 1 ′ ′ ′ ∗ Δ t 2 = s i ′ + 1 2 ∗ s i ′ ′ ∗ Δ t + 1 2 ∗ s i + 1 ′ ′ ∗ Δ t s i + 1 = s i + ∫ 0 Δ t s ′ ( t ) d t = s i + s i ′ ∗ Δ t + 1 2 ∗ s i ′ ′ ∗ Δ t 2 + 1 6 ∗ s i → i + 1 ′ ′ ′ ∗ Δ t 3 = s i + s i ′ ∗ Δ t + 1 3 ∗ s i ′ ′ ∗ Δ t 2 + 1 6 ∗ s i + 1 ′ ′ ∗ Δ t 2 \begin{aligned} s_{i+1}^{\prime\prime} &=s_i''+\int_0^{\Delta t}s_{i\to i+1}^{\prime\prime\prime}dt=s_i''+s_{i\to i+1}^{\prime\prime\prime}*\Delta t \\ s_{i+1}^{\prime} &=s_i^{\prime}+\int_0^{\Delta t}\boldsymbol{s''}(t)dt=s_i^{\prime}+s_i^{\prime\prime}*\Delta t+\frac12*s_{i\to i+1}^{\prime\prime\prime}*\Delta t^2 \\ &= s_i^{\prime}+\frac12*s_i^{\prime\prime}*\Delta t+\frac12*s_{i+1}^{\prime\prime}*\Delta t\\ s_{i+1} &=s_i+\int_0^{\Delta t}\boldsymbol{s'}(t)dt \\ &=s_i+s_i^{\prime}*\Delta t+\frac12*s_i^{\prime\prime}*\Delta t^2+\frac16*s_{i\to i+1}^{\prime\prime\prime}*\Delta t^3\\ &=s_i+s_i^{\prime}*\Delta t+\frac13*s_i^{\prime\prime}*\Delta t^2+\frac16*s_{i+1}^{\prime\prime}*\Delta t^2 \end{aligned} si+1′′si+1si+1=si′′+0Δtsii+1′′′dt=si′′+sii+1′′′Δt=si+0Δts′′(t)dt=si+si′′Δt+21sii+1′′′Δt2=si+21si′′Δt+21si+1′′Δt=si+0Δts(t)dt=si+siΔt+21si′′Δt2+61sii+1′′′Δt3=si+siΔt+31si′′Δt2+61si+1′′Δt2

起点约束 s 0 = s i n i t s_0=s_{init} s0=sinit, s ˙ 0 = s ˙ i n i t \dot s_0=\dot s_{init} s˙0=s˙init, s ¨ 0 = s ¨ i n i t \ddot s_0=\ddot s_{init} s¨0=s¨init满足的是起点的约束,即为实际车辆规划起点的状态。

Status PiecewiseJerkSpeedNonlinearOptimizer::OptimizeByQP(SpeedData* const speed_data, std::vector<double>* distance,std::vector<double>* velocity, std::vector<double>* acceleration) {std::array<double, 3> init_states = {s_init_, s_dot_init_, s_ddot_init_};PiecewiseJerkSpeedProblem piecewise_jerk_problem(num_of_knots_, delta_t_,init_states);piecewise_jerk_problem.set_dx_bounds(0.0, std::fmax(FLAGS_planning_upper_speed_limit, init_states[1]));piecewise_jerk_problem.set_ddx_bounds(s_ddot_min_, s_ddot_max_);piecewise_jerk_problem.set_dddx_bound(s_dddot_min_, s_dddot_max_);piecewise_jerk_problem.set_x_bounds(s_bounds_);// TODO(Jinyun): parameter tunningsconst auto& config =config_.piecewise_jerk_nonlinear_speed_optimizer_config();piecewise_jerk_problem.set_weight_x(0.0);piecewise_jerk_problem.set_weight_dx(0.0);piecewise_jerk_problem.set_weight_ddx(config.acc_weight());piecewise_jerk_problem.set_weight_dddx(config.jerk_weight());std::vector<double> x_ref;for (int i = 0; i < num_of_knots_; ++i) {const double curr_t = i * delta_t_;// get path_sSpeedPoint sp;speed_data->EvaluateByTime(curr_t, &sp);x_ref.emplace_back(sp.s());}piecewise_jerk_problem.set_x_ref(config.ref_s_weight(), std::move(x_ref));// Solve the problemif (!piecewise_jerk_problem.Optimize()) {...*distance = piecewise_jerk_problem.opt_x();*velocity = piecewise_jerk_problem.opt_dx();*acceleration = piecewise_jerk_problem.opt_ddx();return Status::OK();
}

CheckSpeedLimitFeasibility

检查speedlimit是否可行,若不可行则输出QP的结果;若可行,则继续进行非线性规划。代码中只对始点的速度限制和起始点的初始速度进行比较。

bool PiecewiseJerkSpeedNonlinearOptimizer::CheckSpeedLimitFeasibility() {// a naive check on first point of speed limitstatic constexpr double kEpsilon = 1e-6;const double init_speed_limit = speed_limit_.GetSpeedLimitByS(s_init_);// 起始点的速度限制和起始点的初始速度进行比较if (init_speed_limit + kEpsilon < s_dot_init_) {AERROR << "speed limit [" << init_speed_limit<< "] lower than initial speed[" << s_dot_init_ << "]";return false;}return true;
}

SmoothPathCurvature

曲率是关于 s s s的关系式,所以要进行平滑拟合,对于非线性规划的求解器,无论是目标函数还是约束函数,都需要满足二阶可导: κ ′ = f ′ ′ ( s ) \kappa ' = f''(s) κ=f′′(s)在这里插入图片描述
ps: l → κ l \rightarrow \kappa lκ
曲率的平滑也是用到了二次规划的方法,用曲率的一阶导、二阶导、三阶导作为损失函数.

目标函数
m i n f = ∑ i = 0 n − 1 w κ ( κ i − κ i − r e f ) 2 + ∑ i = 0 n − 1 w d d κ κ ¨ i 2 + ∑ i = 0 n − 2 w d d d κ κ ′ ′ ′ i → i + 1 2 \begin{aligned} minf&=\sum_{i=0}^{n-1}w_{\kappa}(\kappa_i-\kappa_{i-ref})^2+\sum_{i=0}^{n-1}w_{dd\kappa}\ddot \kappa_{i}^2+\sum_{i=0}^{n-2}w_{ddd\kappa}{\kappa^{'''}}_{i \to i + 1}^2 \end{aligned} minf=i=0n1wκ(κiκiref)2+i=0n1wddκκ¨i2+i=0n2wdddκκ′′′ii+12

约束
κ i ∈ ( κ min ⁡ i , κ max ⁡ i ) {\kappa_i} \in (\kappa_{\min }^i,\kappa_{\max }^i) κi(κmini,κmaxi) κ i ′ ∈ ( κ m i n i ′ ( s ) , κ m a x i ′ ( s ) ) , κ i ′ ′ ∈ ( κ m i n i ′ ′ ( s ) , κ m a x i ′ ′ ( s ) ) , κ i ′ ′ ′ ∈ ( κ m i n i ′ ′ ′ ( s ) , κ m a x i ′ ′ ′ ( s ) ) \kappa_{i}^{\prime}\in\left(\kappa_{min}^{i}{}^{\prime}(s),\kappa_{max}^{i}{}^{\prime}(s)\right)\text{,}\kappa_{i}^{\prime\prime}\in\left(\kappa_{min}^{i}{}^{\prime\prime}(s),\kappa_{max}^{i}{}^{\prime\prime}(s)\right)\text{,}\kappa_{i}^{\prime\prime\prime}\in\left(\kappa_{min}^{i}{}^{\prime\prime\prime}(s),\kappa_{max}^{i}{}^{\prime\prime\prime}(s)\right) κi(κmini(s),κmaxi(s)),κi′′(κmini′′(s),κmaxi′′(s)),κi′′′(κmini′′′(s),κmaxi′′′(s))
连续性约束
κ i + 1 ′ ′ = κ i ′ ′ + ∫ 0 Δ s κ i → i + 1 ′ ′ ′ d s = κ i ′ ′ + κ i → i + 1 ′ ′ ′ ∗ Δ s κ i + 1 ′ = κ i ′ + ∫ 0 Δ s κ ′ ′ ( s ) d s = κ i ′ + κ i ′ ′ ∗ Δ s + 1 2 ∗ κ i → i + 1 ′ ′ ′ ∗ Δ s 2 = κ i ′ + 1 2 ∗ κ i ′ ′ ∗ Δ s + 1 2 ∗ κ i + 1 ′ ′ ∗ Δ s κ i + 1 = κ i + ∫ 0 Δ s κ ′ ( s ) d s = κ i + κ i ′ ∗ Δ s + 1 2 ∗ κ i ′ ′ ∗ Δ s 2 + 1 6 ∗ κ i → i + 1 ′ ′ ′ ∗ Δ s 3 = κ i + κ i ′ ∗ Δ s + 1 3 ∗ κ i ′ ′ ∗ Δ s 2 + 1 6 ∗ κ i + 1 ′ ′ ∗ Δ s 2 \begin{aligned} \kappa_{i+1}^{\prime\prime} &=\kappa_i''+\int_0^{\Delta s}\kappa_{i\to i+1}^{\prime\prime\prime}ds=\kappa_i''+\kappa_{i\to i+1}^{\prime\prime\prime}*\Delta s \\ \kappa_{i+1}^{\prime} &=\kappa_i^{\prime}+\int_0^{\Delta s}\boldsymbol{\kappa''}(s)ds=\kappa_i^{\prime}+\kappa_i^{\prime\prime}*\Delta s+\frac12*\kappa_{i\to i+1}^{\prime\prime\prime}*\Delta s^2 \\ &= \kappa_i^{\prime}+\frac12*\kappa_i^{\prime\prime}*\Delta s+\frac12*\kappa_{i+1}^{\prime\prime}*\Delta s\\ \kappa_{i+1} &=\kappa_i+\int_0^{\Delta s}\boldsymbol{\kappa'}(s)ds \\ &=\kappa_i+\kappa_i^{\prime}*\Delta s+\frac12*\kappa_i^{\prime\prime}*\Delta s^2+\frac16*\kappa_{i\to i+1}^{\prime\prime\prime}*\Delta s^3\\ &=\kappa_i+\kappa_i^{\prime}*\Delta s+\frac13*\kappa_i^{\prime\prime}*\Delta s^2+\frac16*\kappa_{i+1}^{\prime\prime}*\Delta s^2 \end{aligned} κi+1′′κi+1κi+1=κi′′+0Δsκii+1′′′ds=κi′′+κii+1′′′Δs=κi+0Δsκ′′(s)ds=κi+κi′′Δs+21κii+1′′′Δs2=κi+21κi′′Δs+21κi+1′′Δs=κi+0Δsκ(s)ds=κi+κiΔs+21κi′′Δs2+61κii+1′′′Δs3=κi+κiΔs+31κi′′Δs2+61κi+1′′Δs2
起点约束 κ 0 = κ i n i t \kappa_0=\kappa_{init} κ0=κinit, κ ˙ 0 = κ ˙ i n i t \dot \kappa_0=\dot \kappa_{init} κ˙0=κ˙init, κ ¨ 0 = κ ¨ i n i t \ddot \kappa_0=\ddot \kappa_{init} κ¨0=κ¨init满足的是起点的约束,即为实际车辆规划起点的状态。

采样间隔 Δ s = 0.5 \Delta s = 0.5 Δs=0.5

Status PiecewiseJerkSpeedNonlinearOptimizer::SmoothPathCurvature(const PathData& path_data) {// using piecewise_jerk_path to fit a curve of path kappa profile// TODO(Jinyun): move smooth configs to gflagsconst auto& cartesian_path = path_data.discretized_path();const double delta_s = 0.5;std::vector<double> path_curvature;for (double path_s = cartesian_path.front().s();path_s < cartesian_path.back().s() + delta_s; path_s += delta_s) {const auto& path_point = cartesian_path.Evaluate(path_s);path_curvature.push_back(path_point.kappa());}const auto& path_init_point = cartesian_path.front();std::array<double, 3> init_state = {path_init_point.kappa(),path_init_point.dkappa(),path_init_point.ddkappa()};PiecewiseJerkPathProblem piecewise_jerk_problem(path_curvature.size(),delta_s, init_state);piecewise_jerk_problem.set_x_bounds(-1.0, 1.0);piecewise_jerk_problem.set_dx_bounds(-10.0, 10.0);piecewise_jerk_problem.set_ddx_bounds(-10.0, 10.0);piecewise_jerk_problem.set_dddx_bound(-10.0, 10.0);piecewise_jerk_problem.set_weight_x(0.0);piecewise_jerk_problem.set_weight_dx(10.0);piecewise_jerk_problem.set_weight_ddx(10.0);piecewise_jerk_problem.set_weight_dddx(10.0);piecewise_jerk_problem.set_x_ref(10.0, std::move(path_curvature));if (!piecewise_jerk_problem.Optimize(1000)) {const std::string msg = "Smoothing path curvature failed";AERROR << msg;return Status(ErrorCode::PLANNING_ERROR, msg);}std::vector<double> opt_x;std::vector<double> opt_dx;std::vector<double> opt_ddx;opt_x = piecewise_jerk_problem.opt_x();opt_dx = piecewise_jerk_problem.opt_dx();opt_ddx = piecewise_jerk_problem.opt_ddx();PiecewiseJerkTrajectory1d smoothed_path_curvature(opt_x.front(), opt_dx.front(), opt_ddx.front());for (size_t i = 1; i < opt_ddx.size(); ++i) {double j = (opt_ddx[i] - opt_ddx[i - 1]) / delta_s;smoothed_path_curvature.AppendSegment(j, delta_s);}smoothed_path_curvature_ = smoothed_path_curvature;return Status::OK();
}

SmoothSpeedLimit


限速的函数并非直接可以得到,接下来看看限速函数是怎么来的。也可参考这篇博文【Apollo学习笔记】——规划模块TASK之SPEED_BOUNDS_PRIORI_DECIDER&&SPEED_BOUNDS_FINAL_DECIDER
限速的来源如下图所示:在这里插入图片描述将所有的限速函数相加,得到下图的限速函数,很明显,该函数既不连续也不可导,所以需要对其进行平滑处理。在这里插入图片描述对于限速曲线的平滑,Apollo采样分段多项式进行平滑,之后采样二次规划的方式进行求解。限速曲线的目标函数如下:
m i n f = ∑ i = 0 n − 1 w v ( v i − v i − r e f ) 2 + ∑ i = 0 n − 1 w d d v v ¨ i 2 + ∑ i = 0 n − 2 w d d d v v ′ ′ ′ i → i + 1 2 \begin{aligned} minf&=\sum_{i=0}^{n-1}w_{v}(v_i-v_{i-ref})^2+\sum_{i=0}^{n-1}w_{ddv}\ddot v_{i}^2+\sum_{i=0}^{n-2}w_{dddv}{v^{'''}}_{i \to i + 1}^2 \end{aligned} minf=i=0n1wv(viviref)2+i=0n1wddvv¨i2+i=0n2wdddvv′′′ii+12

约束
v i ∈ ( v min ⁡ i , v max ⁡ i ) {v_i} \in (v_{\min }^i,v_{\max }^i) vi(vmini,vmaxi) v i ′ ∈ ( v m i n i ′ ( s ) , v m a x i ′ ( s ) ) , v i ′ ′ ∈ ( v m i n i ′ ′ ( s ) , v m a x i ′ ′ ( s ) ) , v i ′ ′ ′ ∈ ( v m i n i ′ ′ ′ ( s ) , v m a x i ′ ′ ′ ( s ) ) v_{i}^{\prime}\in\left(v_{min}^{i}{}^{\prime}(s),v_{max}^{i}{}^{\prime}(s)\right)\text{,}v_{i}^{\prime\prime}\in\left(v_{min}^{i}{}^{\prime\prime}(s),v_{max}^{i}{}^{\prime\prime}(s)\right)\text{,}v_{i}^{\prime\prime\prime}\in\left(v_{min}^{i}{}^{\prime\prime\prime}(s),v_{max}^{i}{}^{\prime\prime\prime}(s)\right) vi(vmini(s),vmaxi(s)),vi′′(vmini′′(s),vmaxi′′(s)),vi′′′(vmini′′′(s),vmaxi′′′(s))
连续性约束
v i + 1 ′ ′ = v i ′ ′ + ∫ 0 Δ s v i → i + 1 ′ ′ ′ d s = v i ′ ′ + v i → i + 1 ′ ′ ′ ∗ Δ s v i + 1 ′ = v i ′ + ∫ 0 Δ s v ′ ′ ( s ) d s = v i ′ + v i ′ ′ ∗ Δ s + 1 2 ∗ v i → i + 1 ′ ′ ′ ∗ Δ s 2 = v i ′ + 1 2 ∗ v i ′ ′ ∗ Δ s + 1 2 ∗ v i + 1 ′ ′ ∗ Δ s v i + 1 = v i + ∫ 0 Δ s v ′ ( s ) d s = v i + v i ′ ∗ Δ s + 1 2 ∗ v i ′ ′ ∗ Δ s 2 + 1 6 ∗ v i → i + 1 ′ ′ ′ ∗ Δ s 3 = v i + v i ′ ∗ Δ s + 1 3 ∗ v i ′ ′ ∗ Δ s 2 + 1 6 ∗ v i + 1 ′ ′ ∗ Δ s 2 \begin{aligned} v_{i+1}^{\prime\prime} &=v_i''+\int_0^{\Delta s}v_{i\to i+1}^{\prime\prime\prime}ds=v_i''+v_{i\to i+1}^{\prime\prime\prime}*\Delta s \\ v_{i+1}^{\prime} &=v_i^{\prime}+\int_0^{\Delta s}\boldsymbol{v''}(s)ds=v_i^{\prime}+v_i^{\prime\prime}*\Delta s+\frac12*v_{i\to i+1}^{\prime\prime\prime}*\Delta s^2 \\ &= v_i^{\prime}+\frac12*v_i^{\prime\prime}*\Delta s+\frac12*v_{i+1}^{\prime\prime}*\Delta s\\ v_{i+1} &=v_i+\int_0^{\Delta s}\boldsymbol{v'}(s)ds \\ &=v_i+v_i^{\prime}*\Delta s+\frac12*v_i^{\prime\prime}*\Delta s^2+\frac16*v_{i\to i+1}^{\prime\prime\prime}*\Delta s^3\\ &=v_i+v_i^{\prime}*\Delta s+\frac13*v_i^{\prime\prime}*\Delta s^2+\frac16*v_{i+1}^{\prime\prime}*\Delta s^2 \end{aligned} vi+1′′vi+1vi+1=vi′′+0Δsvii+1′′′ds=vi′′+vii+1′′′Δs=vi+0Δsv′′(s)ds=vi+vi′′Δs+21vii+1′′′Δs2=vi+21vi′′Δs+21vi+1′′Δs=vi+0Δsv(s)ds=vi+viΔs+21vi′′Δs2+61vii+1′′′Δs3=vi+viΔs+31vi′′Δs2+61vi+1′′Δs2

起点约束 v 0 = v i n i t v_0=v_{init} v0=vinit, v ˙ 0 = v ˙ i n i t = 0 \dot v_0=\dot v_{init}=0 v˙0=v˙init=0, v ¨ 0 = v ¨ i n i t = 0 \ddot v_0=\ddot v_{init}=0 v¨0=v¨init=0满足的是起点的约束,即为实际车辆规划起点的状态。

Status PiecewiseJerkSpeedNonlinearOptimizer::SmoothSpeedLimit() {// using piecewise_jerk_path to fit a curve of speed_ref// TODO(Hongyi): move smooth configs to gflagsdouble delta_s = 2.0;std::vector<double> speed_ref;// 获取速度限制for (int i = 0; i < 100; ++i) {double path_s = i * delta_s;double limit = speed_limit_.GetSpeedLimitByS(path_s);speed_ref.emplace_back(limit);}std::array<double, 3> init_state = {speed_ref[0], 0.0, 0.0};PiecewiseJerkPathProblem piecewise_jerk_problem(speed_ref.size(), delta_s,init_state);piecewise_jerk_problem.set_x_bounds(0.0, 50.0);piecewise_jerk_problem.set_dx_bounds(-10.0, 10.0);piecewise_jerk_problem.set_ddx_bounds(-10.0, 10.0);piecewise_jerk_problem.set_dddx_bound(-10.0, 10.0);piecewise_jerk_problem.set_weight_x(0.0);piecewise_jerk_problem.set_weight_dx(10.0);piecewise_jerk_problem.set_weight_ddx(10.0);piecewise_jerk_problem.set_weight_dddx(10.0);piecewise_jerk_problem.set_x_ref(10.0, std::move(speed_ref));if (!piecewise_jerk_problem.Optimize(4000)) {const std::string msg = "Smoothing speed limit failed";AERROR << msg;return Status(ErrorCode::PLANNING_ERROR, msg);}std::vector<double> opt_x;std::vector<double> opt_dx;std::vector<double> opt_ddx;opt_x = piecewise_jerk_problem.opt_x();opt_dx = piecewise_jerk_problem.opt_dx();opt_ddx = piecewise_jerk_problem.opt_ddx();PiecewiseJerkTrajectory1d smoothed_speed_limit(opt_x.front(), opt_dx.front(),opt_ddx.front());for (size_t i = 1; i < opt_ddx.size(); ++i) {double j = (opt_ddx[i] - opt_ddx[i - 1]) / delta_s;smoothed_speed_limit.AppendSegment(j, delta_s);}smoothed_speed_limit_ = smoothed_speed_limit;return Status::OK();
}

OptimizeByNLP

由于字数限制,剩余部分将会放在另一篇文章中。

参考

[1] Planning Piecewise Jerk Nonlinear Speed Optimizer Introduction
[2] Planning 基于非线性规划的速度规划
[3] Apollo星火计划学习笔记——Apollo速度规划算法原理与实践
[4] Apollo规划控制学习笔记

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/101334.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

it运维监控管理平台,统一运维监控管理平台

随着系统规模的不断扩大和复杂性的提高&#xff0c;IT运维管理的难度也在逐步增加。为了应对这一挑战&#xff0c;IT运维监控管理平台应运而生。本文将详细介绍IT运维监控管理平台的作用和优势以及如何选择合适的平台。 IT运维监控管理平台的作用管理平台 IT运维监控管理平台是…

把握市场潮流,溯源一流品质:在抖in新风潮 国货品牌驶过万重山

好原料、好设计、好品质、好服务……这个2023&#xff0c;“国货”二字再度成为服饰行业的发展关键词。以消费热潮为翼&#xff0c;越来越多代表性品类、头部品牌展现出独特价值&#xff0c;迎风而上&#xff0c;在抖音电商掀起一轮轮生意风潮。 一个设问是&#xff1a;在抖音…

Xubuntu16.04系统中解决无法识别exFAT格式的U盘

问题描述 将exFAT格式的U盘插入到Xubuntu16.04系统中&#xff0c;发现系统可以识别到此U盘&#xff0c;但是打不开&#xff0c;查询后发现需要安装exfat-utils库才行。 解决方案&#xff1a; 1.设备有网络的情况下 apt-get install exfat-utils直接安装exfat-utils库即可 2.设备…

当AI遇到IoT:开启智能生活的无限可能

文章目录 1. AI和IoT的融合1.1 什么是人工智能&#xff08;AI&#xff09;&#xff1f;1.2 什么是物联网&#xff08;IoT&#xff09;&#xff1f;1.3 AI和IoT的融合 2. 智能家居2.1 智能家居安全2.2 智能家居自动化 3. 医疗保健3.1 远程监护3.2 个性化医疗 4. 智能交通4.1 交通…

[.NET学习笔记] - Thread.Sleep与Task.Delay在生产中应用的性能测试

场景 有个Service类&#xff0c;自己在内部实现生产者/消费者模式。即多个指令输入该服务后对象后&#xff0c;Service内部有专门的消费线程执行传入的指令。每个指令的执行间隔为1秒。这里有两部分组成&#xff0c; 工作线程的载体。new Thread与Task.Run。执行等待的方法。…

抓包工具fiddler的基础知识

目录 简介 1、作用 2、使用场景 3、http报文分析 3.1、请求报文 3.2、响应报文 4、介绍fiddler界面功能 4.1、AutoResponder(自动响应器) 4.2、Composer(设计请求) 4.3、断点 4.4、弱网测试 5、app抓包 简介 fiddler是位于客户端和服务端之间的http代理 1、作用 监控浏…

【狂神】SpringMVC笔记(一)之详细版

1.Restful 风格 概念&#xff1a; 实现方式&#xff1a; 使用PathVariable 在url相同的情况下&#xff0c;会根据请求方式的不同来执行不同的方法。 使用RestFull风格的好处&#xff1a;简洁、高效、安全 2、接受请求参数及数据回显 2.1、请求参数 方式一&#xff1a;这里…

Java ArrayList

简介 ArrayList类示一个可以动态修改的数组&#xff0c;与普通数组的区别是它没有固定大小的限制&#xff0c;可以添加和删除元素。 适用情况&#xff1a; 频繁的访问列表中的某一元素只需要在列表末尾进行添加和删除某些元素 实例 ArrayList 是一个数组队列&#xff0c;提…

伦敦金的走势高低的规律

伦敦金市场是一个流动性很强的市场&#xff0c;其价格走势会在诸多因素的影响下&#xff0c;出现反复的上下波动&#xff0c;如果投资者能够在这些高低走势中找到一定的规律&#xff0c;在相对有利的时机入场和离场&#xff0c;就能够通过不断的交易&#xff0c;累积大量的财富…

阿里云服务器退款规则_退款政策全解析

阿里云退款政策全解析&#xff0c;阿里云退款分为五天无理由全额退和非全额退订两种&#xff0c;阿里云百科以云服务器为例&#xff0c;阿里云服务器包年包月支持五天无理由全额退订&#xff0c;可申请无理由全额退款&#xff0c;如果是按量付费的云服务器直接释放资源即可。阿…

vue使用谷歌地图实现地点查询

效果 代码 首先在index.html中引入谷歌地图资源 <script src"https://maps.googleapis.com/maps/api/js?key你的api密钥&librariesplaces"></script>页面中 <template><div class"pac-card div-style" id"pac-card"…

webrtc的FULL ICE和Lite ICE

1、ICE的模式 分为FULL ICE和Lite ICE&#xff1a; FULL ICE:是双方都要进行连通性检查&#xff0c;完成的走一遍流程。 Lite ICE: 在FULL ICE和Lite ICE互通时&#xff0c;只需要FULL ICE一方进行连通性检查&#xff0c; Lite一方只需回应response消息。这种模式对于部署在公网…