模型压缩-对模型结构进行优化

模型压缩-对模型结构进行优化

概述

  • 模型压缩通常都是对推断过程而言,训练过程的计算代价通常不考虑,因为GPU可以快速完成任意复杂度模型的训练
  • 对于推断过程来说,模型应用才是对于速度敏感的场景
  • 多数情况下 希望使用尽可能少的能耗完成京可能多的数据处理
  • 推断过程不仅仅需要在CPU设备上完成测试,还需要再低功耗设备完成推断

卷积结构基础优化-空洞卷积

  • 增大感受野,增大感受野基本方式就是增大卷积核大小
  • 增大卷积核大小会增大训练参数 拖慢计算
  • 使用空洞卷积进行优化
  • 空洞卷积将卷积可训练参数之间添加多个1
  • 二维空洞卷积的核心形式就是再普通空洞卷积核心的横向纵向都添加1
  • pytorch中再conv添加dilation参数 默认为1
https://blog.csdn.net/mrjkzhangma/article/details/104929302
  • 关于常规卷积

在这里插入图片描述

  • 关于空洞卷积

在这里插入图片描述

  • 空洞卷积计算:扩张率D,那么就在横纵方向添加D -1 行

在这里插入图片描述

增大感受野的原因

  • 下采样过程中大量池化操作,损失一些信息,再解码重建过程中产生影响

关于分组卷积

  • 将输入特征图按照通道均分为g组,然后对每一组进行常规卷积
  • 由于分组之后,每一组输入特征图的通道数变成Cin / g,那么每一个卷积核的通道数也降低到Cin / g
  • 由于每一组进行的是常规卷积,所以每一组至少需要一个卷积核,也就是分组卷积输出通道数至少为g,那么如果每一组有n个卷积核 输出Cout = n x g, 所以输出通道数是分组数的整数倍
  • 分组卷积中要求输入和输出通道数均能整除分组数g
  • 分组卷积的运算量和参数量的减少,本质原因就是一个卷积核本身通道数减少为原来的g分之一
  • 整个分组卷积的参数量:

在这里插入图片描述

分组卷积的作用

  • 减少运算量和参数,原来的1/g
  • 隔绝不同组的信息交换
  • 如果需要考虑所有输入特征图信息的情况,分组卷积会降低模型的性能,对于这个问题,需要在两个分组卷积之间加入Channel_Shuffle模块打乱通道顺序,从而实现不同分组之间的信息交换

关于分组卷积

import torch
import torch.nn as nn# batch 5 channel 128  大小 28 x 28
x = torch.zeros([5,128,28,28])cnn = nn.Conv2d(128,256,3,groups=2)#  计算cnn 的参数数量  只有一层卷积
#  第一个参数是权重 torch.Size([256, 64, 3, 3])
# 因为分为两组 每一组输入特征图的通道数变成64,然后每一个卷积核的通道数 也是64
# 3 x 3 卷积核 输出256 输入64 总共256个卷积核个数
for var in cnn.parameters():print(var.shape)# cnn = nn.Conv1d(128,256,3,groups=2)
# for var in cnn.parameters():
#     print(var.shape)
from torchvision.models import resnet50,mobilenet_v2
import torch
import timemodel1 = resnet50()
model2 = mobilenet_v2()  # 卷积速度优化# 输入1 输出3  大小 224 x 224
x = torch.randn([1,3,224,224],dtype=torch.float32)# 进行十次推理测试 每一次测试都测量模型推理时间  然后打印结果
for i in range(10):t1 = time.perf_counter()y = model2(x)t2 = time.perf_counter()# 计算推理时间 进行十次推理 发现每一次推理的时间都减小print(f"{t2-t1:.3f}")torch.save(model1.state_dict(),"resnet.pth")#  使用torch.save  保存模型的权重参数  然后以后可以加载这些模型权重  然后重用
torch.save(model2.state_dict(),"mobilenetv2.pth")

关于深度可分离卷积

import torch
import torch.nn as nn
import time# 产生随机测试数据
x = torch.randn([32,64,300,300])
# 定义卷积网络# 逐层卷积  g = Cin = Cout  卷积核大小 3 x 3
cnn1 = nn.Conv2d(64,64,3,groups=64)# 逐点卷积 
cnn2 = nn.Conv2d(64,128,1,groups=1)cnn1.eval() # 推断模型
cnn2.eval() for i in range(10):t1 = time.perf_counter()x = cnn1(x)y = cnn2(x)t2 = time.perf_counter()print(f"{t2 - t1:.3f}")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/101709.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

港陆证券:电子竞技传来重磅消息!概念股上半年业绩普增

国际奥委会宣布建立电子竞技委员会。 据央视新闻报道,北京时间9月6日,国际奥委会在官网发布音讯,国际奥委会有史以来将初次展望电子竞技的未来,建立一个全新的电子竞技委员会。 国际奥委会主席巴赫表明,虚拟体育有着…

个人能做股票期权吗?个人期权交易开户条件新规

个人投资者是可以交易股票期权的,不过期权交易通常需要投资者具备一定的投资经验和风险承受能力,因为期权交易涉及较高的风险和复杂性,下文为大家介绍个人能做股票期权吗?个人期权交易开户条件新规的内容。本文来自:期…

每日一题 2594. 修车的最少时间

难度:中等 思路源于题目标签 “二分”: 二分的上界应该是所有车都给修车能力值最小的人修,下界我设为0每次搜索时判断当前时间下,每位机械工总共能修 n 辆车,n > cars 则右边界左移,否则左边界右移 c…

webhook--详解(gitee 推送)

一、简介 webhook 是一种基于 HTTP 的回调函数,可在 2 个应用编程接口(API)之间实现轻量级的事件驱动通信。是一种新型的前后端交互方式,一种对客户端-服务器模式的逆转,在传统方法中,客户端从服务器请求数…

【java基础面试题】jdk、jre、jvm区别

【java基础面试题】jdk、jre、jvm区别 jdk ​ 从概念上讲JDK是JAVA开发工具,用它来开发JAVA程序,里面有很多基础类库和jre。 ​ JDK(Java Development Kit),它是功能齐全的 Java SDK,是提供给开发者使用的&#xff…

浅谈泛在电力物联网、能源互联网与虚拟电厂

导读:从能源互联网推进受阻,到泛在电力物联网名噪一时,到虚拟电厂再次走向火爆,能源领域亟需更进一步的数智化发展。如今,随着新型电力系统建设推进,虚拟电厂有望迎来快速发展。除了国网和南网公司下属的电…

C++项目:网络版本在线五子棋对战

目录 1.项目介绍 2.开发环境 3.核心技术 4. 环境搭建 5.websocketpp 5.1原理解析 5.2报文格式 5.3websocketpp常用接口介绍 5.4websocket服务器 6.JsonCpp使用 6.1Json数据格式 6.2JsonCpp介绍 7.MySQL API 7.1MySQL API介绍 7.2MySQL API使用 7.3实现增删改查…

misc corrupt

1.打开之后是01二进制 2.利用python二进制转hex或者16进制 print(hex(int(二进制01,2))) 3.利用winHex 4.解码base64

【Spring面试】一、SpringBoot启动优化与Spring IoC

文章目录 Q1、SpringBoot可以同时处理多少请求Q2、SpringBoot如何优化启动速度Q3、谈谈对Spring的理解Q4、Spring的优缺点Q5、Spring IoC容器是什么?作用与优点?Q6、Spring IoC的实现机制是什么Q7、IoC和DI的区别是什么Q8、紧耦合与松耦合的区别&#xf…

大数据Hadoop入门之集群的搭建

hadoop的三种运行模式 本地模式:测试本地的hadoop是否能够运行,用来运行官方的代码。伪分布模式:原先有人拿来测试,目前测试都不用这个模式了。完全分布模式:多台服务器组成分布式环境,生产环境使用 分布式主机文件同步命令 sc…

【Java】线程都有哪几种状态

文章目录 前言传统线程模型(操作系统)中线程状态Java线程中的状态线程的运行流程 前言 首先我们要知道,在传统(操作系统)的线程模型中线程被分为五种状态,在java线程中,线程被分为六种状态。 …

SQL sever中表管理

目录 一、创建表: 1.1语法格式: 1.2示例: 二、修改表: 2.1语法格式: 2.2示例: 三、删除表: 3.1语法格式: 3.2示例: 四、查询表: 4.1语法格式&…