【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER(二)

文章目录

  • TASK系列解析文章
      • OptimizeByNLP
        • 1.get_nlp_info()定义问题规模
        • 2.get_bounds_info()定义约束边界约束
        • 3.get_starting_point()定义初值
        • 4.eval_f()求解目标函数
        • 5.eval_grad_f()求解梯度
        • 6.eval_g()求解约束函数
        • 7.eval_jac_g()求解约束雅可比矩阵
        • 8.eval_h()求解黑塞矩阵
        • 9. finalize_solution()
  • 参考

TASK系列解析文章

1.【Apollo学习笔记】——规划模块TASK之LANE_CHANGE_DECIDER
2.【Apollo学习笔记】——规划模块TASK之PATH_REUSE_DECIDER
3.【Apollo学习笔记】——规划模块TASK之PATH_BORROW_DECIDER
4.【Apollo学习笔记】——规划模块TASK之PATH_BOUNDS_DECIDER
5.【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_PATH_OPTIMIZER
6.【Apollo学习笔记】——规划模块TASK之PATH_ASSESSMENT_DECIDER
7.【Apollo学习笔记】——规划模块TASK之PATH_DECIDER
8.【Apollo学习笔记】——规划模块TASK之RULE_BASED_STOP_DECIDER
9.【Apollo学习笔记】——规划模块TASK之SPEED_BOUNDS_PRIORI_DECIDER&&SPEED_BOUNDS_FINAL_DECIDER
10.【Apollo学习笔记】——规划模块TASK之SPEED_HEURISTIC_OPTIMIZER
11.【Apollo学习笔记】——规划模块TASK之SPEED_DECIDER
12.【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_SPEED_OPTIMIZER
13.【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER(一)
14.【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER(二)

续接上文:【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER(一)

OptimizeByNLP

这部分是具体的非线性规划代码实现。

在代码中首先可以看到构造了PiecewiseJerkSpeedNonlinearIpoptInterface这个类的对象。下面是该类构造函数中所含有的参数。

PiecewiseJerkSpeedNonlinearIpoptInterface::PiecewiseJerkSpeedNonlinearIpoptInterface(const double s_init, const double s_dot_init, const double s_ddot_init,const double delta_t, const int num_of_points, const double s_max,const double s_dot_max, const double s_ddot_min,const double s_ddot_max, const double s_dddot_min,const double s_dddot_max): curvature_curve_(0.0, 0.0, 0.0),v_bound_func_(0.0, 0.0, 0.0),s_init_(s_init),s_dot_init_(s_dot_init),s_ddot_init_(s_ddot_init),delta_t_(delta_t),num_of_points_(num_of_points),s_max_(s_max),s_dot_max_(s_dot_max),s_ddot_min_(-std::abs(s_ddot_min)),s_ddot_max_(s_ddot_max),s_dddot_min_(-std::abs(s_dddot_min)),s_dddot_max_(s_dddot_max),v_offset_(num_of_points),a_offset_(num_of_points * 2) {}

PiecewiseJerkSpeedNonlinearIpoptInterface继承自基类Ipopt::TNLP。为了利用IPOPT的接口TNLP求解问题,需要构建一个接口类来重写TNLP中求解问题所需要的一些函数,并完成对这些函数的实现。

IPOPT(Interior Point Optimizer)是一个用于大规模非线性优化的开源软件包。它可用于解决如下形式的非线性规划问题:
min ⁡ x ∈ R n f ( x ) s.t. g L ≤ g ( x ) ≤ g U x L ≤ x ≤ x U , x ∈ R n \begin{aligned} \min_{x\in\mathbb{R}^{n}}&& f(x) \\ \text{s.t.}&& g^{L}\leq g(x)\leq g^{U} \\ &&x^{L}\leq x\leq x^{U}, \\ &&x\in\mathbb{R}^{n} \end{aligned} xRnmins.t.f(x)gLg(x)gUxLxxU,xRn
g L {g^L} gL g U {g^U} gU是约束函数的上界和下界, x L {x^L} xL x U {x^U} xU是优化变量的上界和下界。

IPOPT的求解由以下几个函数构成:

1.get_nlp_info()定义问题规模

/** Method to return some info about the nlp */bool get_nlp_info(int &n, int &m, int &nnz_jac_g, int &nnz_h_lag,IndexStyleEnum &index_style) override;

• 优化变量数量:n
• 约束函数数量:m
• 雅可比矩阵非0项数量:nnz_jac_g
• 黑塞矩阵非0项数量:nnz_h_lag

2.get_bounds_info()定义约束边界约束

  /** Method to return the bounds for my problem */bool get_bounds_info(int n, double *x_l, double *x_u, int m, double *g_l,double *g_u) override;

• 自变量的下边界:x_l
• 自变量的上边界: x_u
• 约束函数下边界:g_l
• 约束函数的上边界:g_u

通过代码可知变量 x x x的边界约束(5n x 1)为:
x L = [ s i n i t s ( 1 ) − l o w e r ⋮ s ( n − 1 ) − l o w e r s ˙ i n i t 0 ⋮ 0 s ¨ i n i t s ¨ min ⁡ ⋮ s ¨ min ⁡ 0 ⋮ 0 0 ⋮ 0 ] , x U = [ s i n i t s ( 1 ) − u p p e r ⋮ s ( n − 1 ) − u p p e r s ˙ i n i t s ˙ max ⁡ ⋮ s ˙ max ⁡ s ¨ i n i t s ¨ max ⁡ ⋮ s ¨ max ⁡ inf ⁡ ⋮ inf ⁡ inf ⁡ ⋮ inf ⁡ ] {x^L} = \left[ {\begin{array}{ccccccccccccccc}{{s_{init}}}\\{{s_{(1) - lower}}}\\ \vdots \\{{s_{(n - 1) - lower}}}\\{{{\dot s}_{init}}}\\0\\ \vdots \\0\\{{{\ddot s}_{init}}}\\{{{\ddot s}_{\min }}}\\ \vdots \\{{{\ddot s}_{\min }}}\\0\\ \vdots \\0\\0\\ \vdots \\0\end{array}} \right],{x^U} = \left[ {\begin{array}{ccccccccccccccc}{{s_{init}}}\\{{s_{(1) - upper}}}\\ \vdots \\{{s_{(n - 1) - upper}}}\\{{{\dot s}_{init}}}\\{{{\dot s}_{\max }}}\\ \vdots \\{{{\dot s}_{\max }}}\\{{{\ddot s}_{init}}}\\{{{\ddot s}_{\max }}}\\ \vdots \\{{{\ddot s}_{\max }}}\\{\inf }\\ \vdots \\{\inf }\\{\inf }\\ \vdots \\{\inf }\end{array}} \right] xL= sinits(1)lowers(n1)lowers˙init00s¨inits¨mins¨min0000 ,xU= sinits(1)uppers(n1)uppers˙inits˙maxs˙maxs¨inits¨maxs¨maxinfinfinfinf

g ( x ) g(x) g(x)的边界约束([4(n-1)+3n] x 1)为:
g L = [ 0 ⋮ 0 s ′ ′ ′ min ⁡ ⋮ s ′ ′ ′ min ⁡ 0 ⋮ 0 0 ⋮ 0 − inf ⁡ ⋮ − inf ⁡ 0 ⋮ 0 − inf ⁡ ⋮ − inf ⁡ ] , g U = [ s ˙ max ⁡ ⋅ Δ t ⋮ s ˙ max ⁡ ⋅ Δ t s ′ ′ ′ max ⁡ ⋮ s ′ ′ ′ max ⁡ 0 ⋮ 0 0 ⋮ 0 0 ⋮ 0 inf ⁡ ⋮ inf ⁡ 0 ⋮ 0 ] {g^L} = \left[ {\begin{array}{ccccccccccccccc}0\\ \vdots \\0\\{{{s'''}_{\min }}}\\ \vdots \\{{{s'''}_{\min }}}\\0\\ \vdots \\0\\0\\ \vdots \\0\\{ - \inf }\\ \vdots \\{ - \inf }\\0\\ \vdots \\0\\{ - \inf }\\ \vdots \\{ - \inf }\end{array}} \right],{g^U} = \left[ {\begin{array}{ccccccccccccccc}{{{\dot s}_{\max }} \cdot \Delta t}\\ \vdots \\{{{\dot s}_{\max }} \cdot \Delta t}\\{{{s'''}_{\max }}}\\ \vdots \\{{{s'''}_{\max }}}\\0\\ \vdots \\0\\0\\ \vdots \\0\\0\\ \vdots \\0\\{\inf }\\ \vdots \\{\inf }\\0\\ \vdots \\0\end{array}} \right] gL= 00s′′′mins′′′min0000infinf00infinf ,gU= s˙maxΔts˙maxΔts′′′maxs′′′max000000infinf00

3.get_starting_point()定义初值

  /** Method to return the starting point for the algorithm */bool get_starting_point(int n, bool init_x, double *x, bool init_z,double *z_L, double *z_U, int m, bool init_lambda,double *lambda) override;

这部分在OptimizeByQP有具体介绍。
依据是否启动热启动warm-start,来确定是否将之前QP的结果作为NLP初始值。 X 0 {X_0} X0为5n x 1的向量。
X 0 = [ s Q P 0 ⋮ s Q P n − 1 s ˙ Q P 0 ⋮ s ˙ Q P n − 1 s ¨ Q P 0 ⋮ s ¨ Q P n − 1 0 ⋮ 0 0 ⋮ 0 ] {X_0} = \left[ {\begin{array}{ccccccccccccccc}{s_{QP}^0}\\ \vdots \\{s_{QP}^{n - 1}}\\{\dot s_{QP}^0}\\ \vdots \\{\dot s_{QP}^{n - 1}}\\{\ddot s_{QP}^0}\\ \vdots \\{\ddot s_{QP}^{n - 1}}\\0\\ \vdots \\0\\0\\ \vdots \\0\end{array}} \right] X0= sQP0sQPn1s˙QP0s˙QPn1s¨QP0s¨QPn10000

4.eval_f()求解目标函数

  /** Method to return the objective value */bool eval_f(int n, const double *x, bool new_x, double &obj_value) override;

• 变量值:x
• 目标函数值:obj_val
m i n f = ∑ i = 0 n − 1 w s − r e f ( s i − s − r e f i ) 2 + w s ˙ − r e f ( s ˙ i − s ˙ − r e f ) 2 + w s ¨ s ¨ i 2 + ∑ i = 0 n − 2 w s ′ ′ ′ ( s ¨ i + 1 − s ¨ i Δ t ) 2 + ∑ i = 0 n − 1 w l a t _ a c c l a t _ a c c i 2 + w s o f t s _ s l a c k _ l o w e r i + w s o f t s _ s l a c k _ u p p e r i + w t a r g e t − s ( s n − 1 − s t a r g e t ) 2 + w t a r g e t − s ˙ ( s ˙ n − 1 − s ˙ t a r g e t ) 2 + w t a r g e t − s ¨ ( s ¨ n − 1 − s ¨ t a r g e t ) 2 \begin{aligned}minf=&\sum_{i=0}^{n-1}w_{s-ref}(s_i-s_-ref_i)^2+w_{\dot{s}-ref}(\dot{s}_i-\dot{s}_-ref)^2+w_{\ddot{s}}\ddot{s}_i^2+\sum_{i=0}^{n-2}w_{{s}^{'''}}(\frac{\ddot{s}_{i+1}-\ddot{s}_i}{\Delta t})^2\\&+\sum_{i=0}^{n-1}w_{lat\_acc}lat\_acc_i^2+w_{soft}s\_slack\_lower_i+w_{soft}s\_slack\_upper_i\\&+w_{target-s}(s_{n-1}-s_{target})^2+w_{target-\dot{s}}(\dot{s}_{n-1}-\dot{s}_{target})^2+w_{target-\ddot{s}}(\ddot{s}_{n-1}-\ddot{s}_{target})^2 \end{aligned} minf=i=0n1wsref(sisrefi)2+ws˙ref(s˙is˙ref)2+ws¨s¨i2+i=0n2ws′′′(Δts¨i+1s¨i)2+i=0n1wlat_acclat_acci2+wsofts_slack_loweri+wsofts_slack_upperi+wtargets(sn1starget)2+wtargets˙(s˙n1s˙target)2+wtargets¨(s¨n1s¨target)2

5.eval_grad_f()求解梯度

  /** Method to return the gradient of the objective */bool eval_grad_f(int n, const double *x, bool new_x, double *grad_f) override;

• 变量值:x
• 梯度值:grad_f

梯度的定义:
∇ x = d e f [ ∂ ∂ x 1 , ∂ ∂ x 2 , ⋯ , ∂ ∂ x ] T = ∂ ∂ x \nabla_x\overset{\mathrm{def}}{=}\left[\frac{\partial}{\partial x_1},\frac{\partial}{\partial x_2},\cdots,\frac{\partial}{\partial x}\right]^T=\frac{\partial}{\partial\boldsymbol{x}} x=def[x1,x2,,x]T=x

对目标函数求偏导,可得:
∂ f ∂ s = 2 ∑ i = 0 n − 1 w s − r e f ( s i − s − r e f i ) + ∑ i = 0 n − 1 2 w l a t _ a c c s ˙ i 4 κ κ ˙ + 2 w t a r g e t − s ( s n − 1 − s t a r g e t ) + 2 w t a r g e t − s ˙ ( s ˙ n − 1 − s ˙ t a r g e t ) + 2 w t a r g e t − s ¨ ( s ¨ n − 1 − s ¨ t a r g e t ) ∂ f ∂ s ˙ = 2 ∑ i = 0 n − 1 w s ˙ − r e f ( s ˙ i − s ˙ − r e f ) + ∑ i = 0 n − 1 4 w l a t _ a c c s ˙ i 3 κ 2 ∂ f ∂ s ¨ = 2 ∑ i = 0 n − 1 w s ¨ s ¨ i − 2 w s ′ ′ ′ 2 ( s ¨ 1 − s ¨ 0 ) Δ t 2 + ∑ i = 1 n − 2 2 w s ′ ′ ′ ( 2 s ¨ i − s ¨ i + 1 − s ¨ i − 1 ) Δ t 2 + 2 w s ′ ′ ′ 2 ( s ¨ n − 1 − s ¨ n − 2 ) Δ t 2 ∂ f ∂ s _ s l a c k _ l o w e r = n ⋅ w s o f t ∂ f ∂ s _ s l a c k _ u p p e r = n ⋅ w s o f t \begin{aligned} \frac{\partial f}{\partial s}=&2\sum_{i=0}^{n-1}w_{s-ref}(s_i-s_-ref_i)+\sum_{i=0}^{n-1}2w_{lat\_acc}{\dot s_i^4}{\kappa}{\dot\kappa}\\+&2w_{target-s}(s_{n-1}-s_{target})+2w_{target-\dot{s}}(\dot{s}_{n-1}-\dot{s}_{target})+2w_{target-\ddot{s}}(\ddot{s}_{n-1}-\ddot{s}_{target})\\ \frac{\partial f}{\partial \dot s}=&2\sum_{i=0}^{n-1}w_{\dot{s}-ref}(\dot{s}_i-\dot{s}_-ref)+\sum_{i=0}^{n-1}4w_{lat\_acc}{\dot s_i^3}{\kappa^2}\\ \frac{\partial f}{\partial \ddot s}=&2\sum_{i=0}^{n-1}w_{\ddot{s}}\ddot{s}_i-2w_{{s}^{'''}}{\frac{2(\ddot s_1-\ddot s_0)}{\Delta t^2}}+\sum_{i=1}^{n-2}2w_{{s}^{'''}}{\frac{(2\ddot s_i-\ddot s_{i+1}-\ddot s_{i-1})}{\Delta t^2}}+2w_{{s}^{'''}}{\frac{2(\ddot s_{n-1}-\ddot s_{n-2})}{\Delta t^2}}\\ \frac{\partial f}{\partial s\_slack\_lower}=&n \cdot w_{soft}\\ \frac{\partial f}{\partial s\_slack\_upper}=&n \cdot w_{soft} \end{aligned} sf=+s˙f=s¨f=s_slack_lowerf=s_slack_upperf=2i=0n1wsref(sisrefi)+i=0n12wlat_accs˙i4κκ˙2wtargets(sn1starget)+2wtargets˙(s˙n1s˙target)+2wtargets¨(s¨n1s¨target)2i=0n1ws˙ref(s˙is˙ref)+i=0n14wlat_accs˙i3κ22i=0n1ws¨s¨i2ws′′′Δt22(s¨1s¨0)+i=1n22ws′′′Δt2(2s¨is¨i+1s¨i1)+2ws′′′Δt22(s¨n1s¨n2)nwsoftnwsoft

所以,目标函数的梯度为
∂ f ∂ X = 2 ∑ i = 0 n − 1 w s − r e f ( s i − s − r e f i ) + 2 ∑ i = 0 n − 1 w s ˙ − r e f ( s ˙ i − s ˙ − r e f ) + 2 ∑ i = 0 n − 1 w s ¨ s ¨ i − 2 w s ′ ′ ′ 2 ( s ¨ 1 − s ¨ 0 ) Δ t 2 + ∑ i = 1 n − 2 2 w s ′ ′ ′ ( 2 s ¨ i − s ¨ i + 1 − s ¨ i − 1 ) Δ t 2 + 2 w s ′ ′ ′ 2 ( s ¨ n − 1 − s ¨ n − 2 ) Δ t 2 + ∑ i = 0 n − 1 2 w l a t _ a c c s ˙ i 4 κ κ ˙ + ∑ i = 0 n − 1 4 w l a t _ a c c s ˙ i 3 κ 2 + 2 w t a r g e t − s ( s n − 1 − s t a r g e t ) + 2 w t a r g e t − s ˙ ( s ˙ n − 1 − s ˙ t a r g e t ) + 2 w t a r g e t − s ¨ ( s ¨ n − 1 − s ¨ t a r g e t ) + 2 n ⋅ w s o f t \begin{aligned} \frac{\partial f}{\partial X}=&2\sum_{i=0}^{n-1}w_{s-ref}(s_i-s_-ref_i)+2\sum_{i=0}^{n-1}w_{\dot{s}-ref}(\dot{s}_i-\dot{s}_-ref)+2\sum_{i=0}^{n-1}w_{\ddot{s}}\ddot{s}_i\\ -&2w_{{s}^{'''}}{\frac{2(\ddot s_1-\ddot s_0)}{\Delta t^2}}+\sum_{i=1}^{n-2}2w_{{s}^{'''}}{\frac{(2\ddot s_i-\ddot s_{i+1}-\ddot s_{i-1})}{\Delta t^2}}+2w_{{s}^{'''}}{\frac{2(\ddot s_{n-1}-\ddot s_{n-2})}{\Delta t^2}}\\ +&\sum_{i=0}^{n-1}2w_{lat\_acc}{\dot s_i^4}{\kappa}{\dot\kappa}+\sum_{i=0}^{n-1}4w_{lat\_acc}{\dot s_i^3}{\kappa^2}\\ +&2w_{target-s}(s_{n-1}-s_{target})+2w_{target-\dot{s}}(\dot{s}_{n-1}-\dot{s}_{target})+2w_{target-\ddot{s}}(\ddot{s}_{n-1}-\ddot{s}_{target})\\ +&2n\cdot w_{soft} \end{aligned} Xf=+++2i=0n1wsref(sisrefi)+2i=0n1ws˙ref(s˙is˙ref)+2i=0n1ws¨s¨i2ws′′′Δt22(s¨1s¨0)+i=1n22ws′′′Δt2(2s¨is¨i+1s¨i1)+2ws′′′Δt22(s¨n1s¨n2)i=0n12wlat_accs˙i4κκ˙+i=0n14wlat_accs˙i3κ22wtargets(sn1starget)+2wtargets˙(s˙n1s˙target)+2wtargets¨(s¨n1s¨target)2nwsoft

6.eval_g()求解约束函数

  /** Method to return the constraint residuals */bool eval_g(int n, const double *x, bool new_x, int m, double *g) override;

• 变量值:x
• 约束函数值:g
g ( x ) = [ s 1 − s 0 ⋮ s n − 1 − s n − 2 s ¨ 1 − s ¨ 0 Δ t ⋮ s ¨ n − 1 − s ¨ n − 2 Δ t s 1 − ( s 0 + s ˙ 0 Δ t + 1 2 s ¨ 0 Δ t 2 + 1 6 ( s ¨ 1 − s ¨ 0 Δ t ) Δ t 3 ) ⋮ s n − 1 − ( s n − 2 + s ˙ n − 2 Δ t + 1 2 s ¨ n − 2 Δ t 2 + 1 6 ( s ¨ n − 1 − s ¨ n − 2 Δ t ) Δ t 3 ) s ˙ 1 − ( s ˙ 0 + s ¨ 0 Δ t + 1 2 ( s ¨ 1 − s ¨ 0 Δ t ) Δ t 2 ) ⋮ s ˙ n − 1 − ( s ˙ n − 2 + s ¨ n − 2 Δ t + 1 2 ( s ¨ n − 1 − s ¨ n − 2 Δ t ) Δ t 2 ) s ˙ 0 − s p e e d _ l i m i t ( s 0 ) ⋮ s ˙ n − 1 − s p e e d _ l i m i t ( s n − 1 ) s 0 − s _ s o f t _ l o w e r 0 + s _ s l a c k _ l o w e r ⋮ s n − 1 − s _ s o f t _ l o w e r n − 1 + s _ s l a c k _ l o w e r s 0 − s _ s o f t _ u p p e r 0 − s _ s l a c k _ u p p e r ⋮ s n − 1 − s _ s o f t _ u p p e r n − 1 − s _ s l a c k _ u p p e r ] g(x) = \left[ {\begin{array}{ccccccccccccccc}{{s_1} - {s_0}}\\ \vdots \\{{s_{n - 1}} - {s_{n - 2}}}\\{\frac{{{{\ddot s}_1} - {{\ddot s}_0}}}{{\Delta t}}}\\ \vdots \\{\frac{{{{\ddot s}_{n - 1}} - {{\ddot s}_{n - 2}}}}{{\Delta t}}}\\{{s_1} - ({s_0} + {{\dot s}_0}\Delta t{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{{\ddot s}_0}\Delta {t^{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{6}}}(\frac{{{{\ddot s}_1} - {{\ddot s}_0}}}{{\Delta t}})\Delta {t^{\rm{3}}})}\\ \vdots \\{{s_{n - 1}} - ({s_{n - 2}} + {{\dot s}_{n - 2}}\Delta t{\rm{ + }}\frac{{\rm{1}}}{{\rm{2}}}{{\ddot s}_{n - 2}}\Delta {t^{\rm{2}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{6}}}(\frac{{{{\ddot s}_{n - 1}} - {{\ddot s}_{n - 2}}}}{{\Delta t}})\Delta {t^{\rm{3}}})}\\{{{\dot s}_1} - ({{\dot s}_0} + {{\ddot s}_0}\Delta t + \frac{1}{2}(\frac{{{{\ddot s}_1} - {{\ddot s}_0}}}{{\Delta t}})\Delta {t^2})}\\ \vdots \\{{{\dot s}_{n - 1}} - ({{\dot s}_{n - 2}} + {{\ddot s}_{n - 2}}\Delta t + \frac{1}{2}(\frac{{{{\ddot s}_{n - 1}} - {{\ddot s}_{n - 2}}}}{{\Delta t}})\Delta {t^2})}\\{{{\dot s}_0} - speed\_limit({s_0})}\\ \vdots \\{{{\dot s}_{n - 1}} - speed\_limit({s_{n - 1}})}\\{{s_0} - s\_soft\_lowe{r_0} + s\_slack\_lower}\\ \vdots \\{{s_{n - 1}} - s\_soft\_lowe{r_{n - 1}} + s\_slack\_lower}\\{{s_0} - s\_soft\_uppe{r_0} - s\_slack\_upper}\\ \vdots \\{{s_{n - 1}} - s\_soft\_uppe{r_{n - 1}} - s\_slack\_upper}\end{array}} \right] g(x)= s1s0sn1sn2Δts¨1s¨0Δts¨n1s¨n2s1(s0+s˙0Δt+21s¨0Δt2+61(Δts¨1s¨0)Δt3)sn1(sn2+s˙n2Δt+21s¨n2Δt2+61(Δts¨n1s¨n2)Δt3)s˙1(s˙0+s¨0Δt+21(Δts¨1s¨0)Δt2)s˙n1(s˙n2+s¨n2Δt+21(Δts¨n1s¨n2)Δt2)s˙0speed_limit(s0)s˙n1speed_limit(sn1)s0s_soft_lower0+s_slack_lowersn1s_soft_lowern1+s_slack_lowers0s_soft_upper0s_slack_uppersn1s_soft_uppern1s_slack_upper

7.eval_jac_g()求解约束雅可比矩阵

  /** Method to return:*   1) The structure of the jacobian (if "values" is nullptr)*   2) The values of the jacobian (if "values" is not nullptr)*/bool eval_jac_g(int n, const double *x, bool new_x, int m, int nele_jac,int *iRow, int *jCol, double *values) override;

• 变量值:x
• 雅可比矩阵非0元素数量:nele_jac
• 雅可比矩阵值:values

f : R n → R n f:\mathbb{R}^n\to\mathbb{R}^n f:RnRn 是一个可微函数,则 f f f 在点 x = ( x 1 , x 2 , ⋯ , x n ) T \boldsymbol{x}=(x_1,x_2,\cdots,x_n)^T x=(x1,x2,,xn)T 处的雅可比矩阵为:

J = ( ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ⋯ ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ⋯ ∂ f 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ f n ∂ x 1 ∂ f n ∂ x 2 ⋯ ∂ f n ∂ x n ) \boldsymbol{J}=\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix} J= x1f1x1f2x1fnx2f1x2f2x2fnxnf1xnf2xnfn

其中, f i f_i fi 表示 f f f 的第 i i i 个分量函数, ∂ f i ∂ x j \frac{\partial f_i}{\partial x_j} xjfi 表示 f i f_i fi 对第 j j j 个自变量 x j x_j xj 的偏导数。

求解器通过稀疏矩阵来保存值。在这里插入图片描述在这里插入图片描述

稀疏矩阵的例子

由约束矩阵可知,共有7个类型的函数,分别求偏导可得:

  • 单调性约束: g 1 = s i + 1 − s i g_1=s_{i+1}-s_i g1=si+1si ∂ g 1 ∂ s i = − 1 , ∂ g 1 ∂ s i + 1 = 1 \frac{\partial g_1}{\partial s_i}=-1,\frac{\partial g_1}{\partial s_{i+1}}=1 sig1=1,si+1g1=1

  • 加加速度jerk约束: g 2 = s ¨ i + 1 − s ¨ i Δ t g_2 = \frac {\ddot s_{i+1}-\ddot s_i}{\Delta t} g2=Δts¨i+1s¨i ∂ g 2 ∂ s i = − 1 Δ t , ∂ g 2 ∂ s i + 1 = 1 Δ t \frac{\partial g_2}{\partial s_i}=-\frac{1}{\Delta t},\frac{\partial g_2}{\partial s_{i+1}}=\frac{1}{\Delta t} sig2=Δt1,si+1g2=Δt1

  • 位置等式约束: g 3 = s i + 1 − ( s i + s i ′ ∗ Δ t + 1 3 ∗ s i ′ ′ ∗ Δ t 2 + 1 6 ∗ s i + 1 ′ ′ ∗ Δ t 2 ) g_3=s_{i+1}-(s_i+s_i^{\prime}*\Delta t+\frac13*s_i^{\prime\prime}*\Delta t^2+\frac16*s_{i+1}^{\prime\prime}*\Delta t^2) g3=si+1(si+siΔt+31si′′Δt2+61si+1′′Δt2)
    ∂ g 3 ∂ s i = − 1 ∂ g 3 ∂ s i + 1 = 1 ∂ g 3 ∂ s ˙ i = − Δ t ∂ g 3 ∂ s ¨ i = − Δ t 2 3 ∂ g 3 ∂ s ¨ i + 1 = − Δ t 2 6 \begin{gathered} \begin{aligned}\frac{\partial g_3}{\partial s_i}=-1\end{aligned} \\ \frac{\partial g_3}{\partial s_{i+1}}=1 \\ \begin{aligned}\frac{\partial g_3}{\partial \dot s_i}&=-\Delta t\end{aligned} \\ \frac{\partial g_3}{\partial\ddot{s}_i}=-\frac{\Delta t^2}3 \\ \frac{\partial g_3}{\partial\ddot{s}_{i+1}}=-\frac{\Delta t^2}6 \end{gathered} sig3=1si+1g3=1s˙ig3=Δts¨ig3=3Δt2s¨i+1g3=6Δt2

  • 速度等式约束: g 4 = s i + 1 ′ − ( s i ′ + 1 2 ∗ s i ′ ′ ∗ Δ t + 1 2 ∗ s i + 1 ′ ′ ∗ Δ t ) g_4=s_{i+1}^{\prime}-(s_i^{\prime}+\frac12*s_i^{\prime\prime}*\Delta t+\frac12*s_{i+1}^{\prime\prime}*\Delta t) g4=si+1(si+21si′′Δt+21si+1′′Δt)
    ∂ g 4 ∂ s ˙ i = − 1 ∂ g 4 ∂ s ˙ i + 1 = 1 ∂ g 4 ∂ s ¨ i = − Δ t 2 ∂ g 4 ∂ s ¨ i + 1 = − Δ t 2 \begin{gathered} \frac{\partial g_4}{\partial\dot{s}_i}=-1 \\ \frac{\partial g_4}{\partial\dot{s}_{i+1}}=1 \\ \frac{\partial g_4}{\partial\ddot{s}_i}=-\frac{\Delta t}2 \\ \frac{\partial g_4}{\partial\ddot{s}_{i+1}}=-\frac{\Delta t}2 \end{gathered} s˙ig4=1s˙i+1g4=1s¨ig4=2Δts¨i+1g4=2Δt

  • 速度限制约束: g 5 = s ˙ i − s p e e d _ l i m i t ( s i ) g_5={{{\dot s}_i} - speed\_limit({s_i})} g5=s˙ispeed_limit(si)
    ∂ g 5 ∂ s ˙ i = 1 , ∂ g 5 ∂ s i = − d s p e e d _ l i m i t ( s i ) d s i \frac{\partial g_5}{\partial \dot s_i}=1,\frac{\partial g_5}{\partial s_{i}}=-\frac{d speed\_limit({s_i})}{ds_i} s˙ig5=1,sig5=dsidspeed_limit(si)

  • 软约束lower: g 6 = s i − s _ s o f t _ l o w e r i + s _ s l a c k _ l o w e r i g_6=s_i-s\_soft\_lower_i+s\_slack\_lower_i g6=sis_soft_loweri+s_slack_loweri
    ∂ g 6 ∂ s i = 1 , ∂ g 6 ∂ s _ s l a c k _ l o w e r i = 1 \frac{\partial g_6}{\partial s_i}=1,\frac{\partial g_6}{\partial s\_slack\_lower_i}=1 sig6=1,s_slack_lowerig6=1

  • 软约束upper: g 7 = s i − s _ s o f t _ u p p e r i − s _ s l a c k _ u p p e r i g_7=s_i-s\_soft\_upper_i-s\_slack\_upper_i g7=sis_soft_upperis_slack_upperi
    ∂ g 7 ∂ s i = 1 , ∂ g 7 ∂ s _ s l a c k _ u p p e r i = − 1 \frac{\partial g_7}{\partial s_i}=1,\frac{\partial g_7}{\partial s\_slack\_upper_i}=-1 sig7=1,s_slack_upperig7=1

雅可比矩阵(维度:[4(N-1)+3N]*5N)如下:
[ − 1 1 ⋱ ⋱ − 1 1 − 1 Δ t 1 Δ t ⋱ ⋱ − 1 Δ t 1 Δ t − 1 1 ⋱ ⋱ − 1 1 − Δ t ⋱ − Δ t − Δ t 2 3 − Δ t 2 6 ⋱ ⋱ − Δ t 2 3 − Δ t 2 6 − 1 1 ⋱ ⋱ − 1 1 − Δ t 2 − Δ t 2 ⋱ ⋱ − Δ t 2 − Δ t 2 − v _ f ( s i ) ′ ⋱ − v _ f ( s i ) ′ 1 ⋱ 1 1 ⋱ 1 1 ⋱ 1 1 ⋱ 1 − 1 ⋱ − 1 ] \left[ {\begin{array}{ccccccccccccccc}{\begin{array}{ccccccccccccccc}{ - 1}&1&{}&{}\\{}& \ddots & \ddots &{}\\{}&{}&{ - 1}&1\end{array}}&{}&{}&{}&{}\\{}&{}&{\begin{array}{ccccccccccccccc}{ - \frac{1}{{\Delta t}}}&{\frac{1}{{\Delta t}}}&{}&{}\\{}& \ddots & \ddots &{}\\{}&{}&{ - \frac{1}{{\Delta t}}}&{\frac{1}{{\Delta t}}}\end{array}}&{}&{}\\{\begin{array}{ccccccccccccccc}{ - 1}&1&{}&{}\\{}& \ddots & \ddots &{}\\{}&{}&{ - 1}&1\end{array}}&{\begin{array}{ccccccccccccccc}{ - \Delta t}&{}&{}\\{}& \ddots &{}\\{}&{}&{ - \Delta t}\end{array}}&{\begin{array}{ccccccccccccccc}{ - \frac{{\Delta {t^2}}}{3}}&{ - \frac{{\Delta {t^2}}}{6}}&{}&{}\\{}& \ddots & \ddots &{}\\{}&{}&{ - \frac{{\Delta {t^2}}}{3}}&{ - \frac{{\Delta {t^2}}}{6}}\end{array}}&{}&{}\\{}&{\begin{array}{ccccccccccccccc}{ - 1}&1&{}&{}\\{}& \ddots & \ddots &{}\\{}&{}&{ - 1}&1\end{array}}&{\begin{array}{ccccccccccccccc}{ - \frac{{\Delta t}}{2}}&{ - \frac{{\Delta t}}{2}}&{}&{}\\{}& \ddots & \ddots &{}\\{}&{}&{ - \frac{{\Delta t}}{2}}&{ - \frac{{\Delta t}}{2}}\end{array}}&{}&{}\\{\begin{array}{ccccccccccccccc}{ - v\_f({s_i})'}&{}&{}\\{}& \ddots &{}\\{}&{}&{ - v\_f({s_i})'}\end{array}}&{\begin{array}{ccccccccccccccc}1&{}&{}\\{}& \ddots &{}\\{}&{}&1\end{array}}&{}&{}&{}\\{\begin{array}{ccccccccccccccc}1&{}&{}\\{}& \ddots &{}\\{}&{}&1\end{array}}&{}&{}&{\begin{array}{ccccccccccccccc}1&{}&{}\\{}& \ddots &{}\\{}&{}&1\end{array}}&{}\\{\begin{array}{ccccccccccccccc}1&{}&{}\\{}& \ddots &{}\\{}&{}&1\end{array}}&{}&{}&{}&{\begin{array}{ccccccccccccccc}{ - 1}&{}&{}\\{}& \ddots &{}\\{}&{}&{ - 1}\end{array}}\end{array}} \right] 11111111v_f(si)v_f(si)1111ΔtΔt111111Δt1Δt1Δt1Δt13Δt26Δt23Δt26Δt22Δt2Δt2Δt2Δt1111

8.eval_h()求解黑塞矩阵

  /** Method to return:*   1) The structure of the hessian of the lagrangian (if "values" is* nullptr) 2) The values of the hessian of the lagrangian (if "values" is not* nullptr)*/bool eval_h(int n, const double *x, bool new_x, double obj_factor, int m,const double *lambda, bool new_lambda, int nele_hess, int *iRow,int *jCol, double *values) override;

• 变量值:x
• 拉格朗日乘数:lambda
• 黑塞矩阵值:values
• 目标函数因数:obj_factor

黑塞矩阵的基本形式如下所示:

H = ( ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ) H = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix} H= x122fx2x12fxnx12fx1x22fx222fxnx22fx1xn2fx2xn2fxn22f

其中, f ( x ) f(\boldsymbol{x}) f(x) 是二次可微函数, ∂ 2 f ∂ x i ∂ x j \frac{\partial^2 f}{\partial x_i \partial x_j} xixj2f 表示 f ( x ) f(\boldsymbol{x}) f(x) x i x_i xi x j x_j xj 的二阶偏导数, H H H 表示黑塞矩阵。

目标函数的二阶偏导只有个别项是非0的:
∂ f ∂ s i 2 = 2 w s − r e f + 2 w l a t _ a c c [ s ˙ i 4 ⋅ ( κ ′ ( s i ) ) 2 + s ˙ i 4 ⋅ κ ( s i ) ⋅ κ ′ ′ ( s i ) ] + 2 w t a r g e t − s + 2 w t a r g e t − s ˙ + 2 w t a r g e t − s ¨ ∂ f ∂ s i ∂ s i ′ = 8 w l a t _ a c c s i ′ 3 ⋅ κ ( s i ) ⋅ κ ′ ( s i ) ∂ f ∂ s i ′ 2 = 12 w l a t _ a c c s i ′ 2 ⋅ κ 2 ( s i ) + 2 w s ˙ − r e f ∂ f ∂ s i ′ ′ 2 = 2 w a s i ′ 2 ⋅ κ 2 ( s i ) + 4 w j Δ t 2 + 2 w a ∂ f ∂ s i ′ ′ ∂ s i + 1 ′ ′ = − 2 w j Δ t 2 \begin{aligned} \frac{\partial f}{\partial s_i^2}&=2w_{s-ref}+2w_{lat\_acc}[ \dot s_i^4\cdot(\kappa^{\prime}(s_i))^2+\dot s_i^4\cdot \kappa(s_i)\cdot \kappa^{\prime\prime}(s_i)] \\&+2w_{target-s}+2w_{target-\dot s}+2w_{target-\ddot s}\\ \frac{\partial f}{\partial s_i \partial s_i^{\prime}}&=8w_{lat\_acc}{s_i^{\prime}}^3\cdot \kappa(s_i)\cdot \kappa^{\prime}(s_i) \\ \frac{\partial f}{\partial{s_i^{\prime}}^2}&=12w_{lat\_acc}{s_i^{\prime}}^2\cdot \kappa^2(s_i)+2w_{\dot s-ref} \\ \frac{\partial f}{\partial{s_i^{\prime\prime}}^2}&=2w_a{s_i^{\prime}}^2\cdot \kappa^2(s_i)+\frac{4w_j}{\Delta t^2}+2w_a \\ \frac{\partial f}{\partial s_i^{\prime\prime}\partial s_{i+1}^{\prime\prime}}&=-\frac{2w_j}{\Delta t^2}\end{aligned} si2fsisifsi2fsi′′2fsi′′si+1′′f=2wsref+2wlat_acc[s˙i4(κ(si))2+s˙i4κ(si)κ′′(si)]+2wtargets+2wtargets˙+2wtargets¨=8wlat_accsi3κ(si)κ(si)=12wlat_accsi2κ2(si)+2ws˙ref=2wasi2κ2(si)+Δt24wj+2wa=Δt22wj约束函数的二阶偏导数:
∂ g ∂ s i 2 = − s p e e d _ l i m i t ′ ′ ( s i ) \begin{aligned} &\frac{\partial g}{\partial{s_i}^2}=-speed\_limit^{\prime\prime}(s_i) \end{aligned} si2g=speed_limit′′(si)

9. finalize_solution()

  /** @name Solution Methods *//** This method is called when the algorithm is complete so the TNLP can* store/write the solution */void finalize_solution(Ipopt::SolverReturn status, int n, const double *x,const double *z_L, const double *z_U, int m,const double *g, const double *lambda,double obj_value, const Ipopt::IpoptData *ip_data,Ipopt::IpoptCalculatedQuantities *ip_cq) override;

目标函数取得最小值时的优化量:x
目标函数最小值:obj_value

最后再次回顾一下流程:

  • Input.输入部分包括PathData以及起始的TrajectoryPoint
  • Process.
    • Snaity Check. 这样可以确保speed_data不为空,并且speed Optimizer不会接收到空数据.
    • const auto problem_setups_status = SetUpStatesAndBounds(path_data, *speed_data); 初始化QP问题。若失败,则会清除speed_data中的数据。
    • const auto qp_smooth_status = OptimizeByQP(speed_data, &distance, &velocity, &acceleration); 求解QP问题,并获得distance\velocity\acceleration等数据。 若失败,则会清除speed_data中的数据。这部分用以计算非线性问题的初始解,对动态规划的结果进行二次规划平滑
    • const bool speed_limit_check_status = CheckSpeedLimitFeasibility();
      检查速度限制。接着或执行以下四个步骤:
      1)Smooth Path Curvature 2)SmoothSpeedLimit 3)Optimize By NLP 4)Record speed_constraint
    • 将 s/t/v/a/jerk等信息添加进 speed_data 并且补零防止fallback。
  • Output.输出SpeedData, 包括轨迹的s/t/v/a/jerk。

参考

[1] Planning Piecewise Jerk Nonlinear Speed Optimizer Introduction
[2] Planning 基于非线性规划的速度规划
[3] Apollo星火计划学习笔记——Apollo速度规划算法原理与实践
[4] Apollo规划控制学习笔记

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/102069.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

刷题笔记18——数组查缺补漏、二分搜索变体

人就是这样的,想来想去,犹豫来犹豫去,觉得自己没有准备好,勇气没攒够,其实只要迈出去了那一步,就会发现其实所有的一切,早就准备好了。——巫哲Q《撒野》 528. 按权重随机选择 轮盘赌 class S…

synchronized 关键字

synchronized是Java中的关键字,它用于实现同步访问共享资源,可解决共享资源竞争问题,以确保多个线程之间共享资源访问的正确性。当一个方法或代码块被声明为synchronized时,只有一个线程可以执行该方法或代码块。其他尝试访问该方…

面试题 17.16. 按摩师

按摩师(easy) 题目链接: 面试题 17.16. 按摩师 题目描述: 一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列&#xff0c…

冠达管理:股票退市整理期?

近些年来,随着我国股市的发展,股票市场的出资者逐渐增多。但在出资过程中,退市股票的问题也成为了备受重视的论题。那么,股票退市收拾期到底是什么?如何应对退市股票? 首要,什么是股票退市收拾…

【ES】笔记-Class类剖析

Class Class介绍与初体验ES5 通过构造函数实例化对象ES6 通过Class中的constructor实列化对象 Class 静态成员实例对象与函数对象的属性不相通实例对象与函数对象原型上的属性是相通的Class中对于static 标注的对象和方法不属于实列对象,属于类。 ES5构造函数继承Cl…

【LeetCode-中等题】46. 全排列

文章目录 组合并集问题汇总:题目方法一:递归回溯 组合并集问题汇总: 1、子集去重版本 2、组合去重版本 3、子集非去重版本 题目 这题中nums中的数各不相同,所以不需要去重: 而下面这题,nums中的数会存在重…

javaee spring 测试aop 切面

切面类 package com.test.advice;import org.aspectj.lang.ProceedingJoinPoint;//增强类 public class MyAdvice {//将这个增强方法切入到service层的add方法前public void before(){System.out.println("添加用户之前");}}目标类 package com.test.service;publi…

【脑机接口】基于运动想象的康复指导在脑卒中偏瘫患者中的应用

【摘要】 目的 探讨运动想象康复指导对脑卒中偏瘫患者的康复效果及意义。 方法 将 60例脑卒中偏瘫患者随机分为观察组(n31)和对照组(n29),对照组的康复训练指导采用讲解示范法,观察组采用运动想象法 。比较两组 患者 的运 动功能 、日常生活 活动能力及 …

【EI会议征稿】第三届机械自动化与电子信息工程国际学术会议(MAEIE 2023)

第三届机械自动化与电子信息工程国际学术会议(MAEIE 2023) 第三届机械自动化与电子信息工程国际学术会议(MAEIE 2023)将于2023年12月15-17日在江苏南京举行。本会议通过与业内众多平台、社会各团体协力,聚集机械自动…

RabbitMQ学习笔记

1、什么是MQ? MQ全称message queue(消息队列),本质是一个队列,FIFO先进先出,是消息传送过程中保存消息的容器,多 用于分布式系统之间进行通信。 在互联网架构中,MQ是一种非常常见的…

【数据库】MySQL基础知识全解

系列综述: 💞目的:本系列是个人整理为了秋招面试的,整理期间苛求每个知识点,平衡理解简易度与深入程度。 🥰来源:材料主要源于拓跋阿秀、小林coding等大佬博客进行的,每个知识点的修…

一百七十三、Flume——Flume写入HDFS后的诸多小文件问题

一、目的 在用Flume采集Kafka中的数据写入HDFS后,发现写入HDFS的不是每天一个文件,而是一个文件夹,里面有很多小文件,浪费namenode的宝贵资源 二、Flume的配置文件优化(参考了其他博文) (一&a…