【C++】模拟实现二叉搜索树的增删查改功能

在这里插入图片描述
在这里插入图片描述

个人主页:🍝在肯德基吃麻辣烫
我的gitee:C++仓库
个人专栏:C++专栏

文章目录

  • 一、二叉搜索树的Insert操作(非递归)
    • 分析过程
    • 代码求解
  • 二、二叉搜索树的Erase操作(非递归)
    • 分析过程
    • 代码求解
  • 三、二叉搜索树的Find操作
    • 代码求解
  • 四、构造+拷贝构造+析构+赋值重载
    • 节点的代码
    • 构造函数
    • 拷贝构造函数
    • 赋值运算符重载
    • 析构函数
  • 二叉搜索树递归版本
    • 插入操作递归版本
    • 删除操作递归版本
  • 总结



一、二叉搜索树的Insert操作(非递归)

分析过程

假如这里有一棵树,我们需要对这棵树插入一个新的节点:

在这里插入图片描述

  • 假如需要插入16这个节点。

在这里插入图片描述
要分几个步骤进行:
1)先从根节点开始判断待插入节点和根节点谁大,根节点大就往左比较,根节点小了就往右比较。

第一步这个过程需要提前记录节点的父亲。

2)找到待插入位置后,先new一个新的节点;然后判断该节点是在前面记录的父亲节点的左边还是右边,然后连接起来即可。

代码求解

bool _Insert(Node* root, const T& val)
{if (root == nullptr){root = new Node(val);return true;}Node* cur = _root;Node* cur_par = _root;//找插入位置while (cur){if (val > cur->_val){cur_par = cur;cur = cur->_right;}else if (val < cur->_val){cur_par = cur;cur = cur->_left;}//相同就不能插入else{cout << "无法插入" << endl;return false;}}//找到插入位置了,记录父亲Node* insNode = new Node(val);if (cur_par->_val < val){cur_par->_right = insNode;return true;}else{cur_par->_left = insNode;return true;}
}

二、二叉搜索树的Erase操作(非递归)

分析过程

以下面这棵树为例:

假如我们要删除7这个节点。
在这里插入图片描述

1)查找该节点是否存在于树中。

2)如果存在,先判断该节点属于下面的哪种类型:

  • 1)删除的节点是叶子节点,直接删除即可。
  • 2)删除的节点只有一个孩子,需要先判断它的孩子是left还是right,然后让该节点的父亲节点指向它的孩子即可。
  • 3)如果删除的节点有leftright两个孩子,需要找一个节点进行替换;来保证这棵树在删除一个节点后还是一棵二叉搜索树。该找哪个节点来替换呢?
    • 1)找删除节点的左子树的最大节点(最右)
    • 2)找删除节点的右子树的最小节点(最左)

找这两个节点的任意一个均可。

在这里可能有个疑问,万一找不到呢?

你放心吧!一定能找到,这是二叉搜索树的特性。

找到该节点后,将该节点与待删除的节点进行交换,然后删除交换后的节点即可。

在上面的例子中,很显然7属于叶子节点,直接删除即可。

需要注意的是:
我们在寻找那个替代节点时,像插入一样,需要记录它的父
亲,这样在删除的时候才能知道删除left孩子还是right孩子。

代码求解

bool _Erase(Node* root,const T& val)
{//第一步:先找到要删除的节点Node* cur = root;Node* cur_parent = cur;while (cur){if (cur->_val > val){cur_parent = cur;cur = cur->_left;}else if (cur->_val < val){cur_parent = cur;cur = cur->_right;}//找到了//待删除的节点分三种情况else{//1.左右子树为空;2.其中一个子树为空if (cur->_left == nullptr){//要知道我是父亲的左还是右if (cur_parent->_left == cur){cur_parent->_left = cur->_right;}else if (cur_parent->_right == cur){cur_parent->_right = cur->_right;}}else if (cur->_right == nullptr){//要知道我是父亲的左还是右if (cur_parent->_left == cur){cur_parent->_left = cur->_left;}else if (cur_parent->_right == cur){cur_parent->_right = cur->_left;}}//3.删除的节点左右都不为空else{//先找替代节点//找左子树的最大节点或者右子树的最小节点来替代//         最右             最左Node* lParent = cur;Node* leftMax = cur->_left;while (leftMax->_right){lParent = leftMax;leftMax = leftMax->_right;}//找到了,进行替换swap(cur->_val, leftMax->_val);//替换完成后,必须删除该节点,不能用递归删除。//因为如果用递归,可能就找不到要删除的节点了//这里还要判断leftMax这个替换节点是它父亲的左还是右子节点//因为有一种极端情况是,leftMax是在父亲的左边if (lParent->_right == leftMax){lParent->_right = leftMax->_left;//leftMax是左子树的最右节点了,它不会有右孩子,但可能有左孩子}else if (lParent->_left == leftMax){lParent->_left = leftMax->_left;}cur = leftMax;}delete cur;cur = nullptr;return true;}}return false;
}

三、二叉搜索树的Find操作

查找节点过于简单,直接贴代码。

代码求解

bool _Find(Node* root, const T& val)
{if (root == nullptr){return false;}Node* cur = _root;while (cur){if (cur->_val < val){cur = cur->_right;}else if (cur->_val > val){cur = cur->_left;}else{return true;}}return false;
}

四、构造+拷贝构造+析构+赋值重载

节点的代码

template<class T>
struct BSTreeNode
{BSTreeNode(const T& val):_left(nullptr), _right(nullptr), _val(val){}BSTreeNode<T>* _left;BSTreeNode<T>* _right;T _val;
};

构造函数

BSTree():_root(nullptr)
{}

拷贝构造函数

拷贝构造就是将一棵已有的树对每一个节点进行拷贝即可。
这个过程是深拷贝。

由于我们需要将每一个节点都进行拷贝并连接起来。所以这里需要前序遍历的思想处理。

Node* Copy(Node* root)
{if (root == nullptr){return nullptr;}Node* Copyroot = new Node(root->_val);Copyroot->_left = Copy(root->_left);Copyroot->_right = Copy(root->_right);return Copyroot;
}

赋值运算符重载

这里的赋值重载可以用现代写法
1)先将原树传给operator=()函数,用生成临时对象的方式传递,然后让被赋值的树的_root与该临时对象树的_root进行交换即可。

BSTree<T>& operator=(BSTree<T> t)
{swap(_root, t._root);return *this;
}

这样写的好处是:
1)t是一个临时对象,出了作用域会自己调用析构函数进行销毁。
2)_roott._root交换后,原来这棵树会被临时对象销毁。


析构函数

将一棵树的每一个节点进行释放,就需要从下往上进行逐一释放,这个就用到后续遍历的思想。

~BSTree()
{Destroy(_root);
}//后续遍历销毁
void Destroy(Node* root)
{if (root == nullptr){return;}Destroy(root->_left);Destroy(root->_right);delete root;root = nullptr;
}

二叉搜索树递归版本

插入操作递归版本

原理与非递归版本是一样的。

最大的区别是,在root的前面加上了一个引用

  • 1)先找到待插入位置
  • 2)进行插入即可。

这里不再需要记录父亲的原因是:

加了引用后,当遇到空节点时,让

root = new Node(val)

这个操作即可,因为当前的root是上一层栈帧的root节点的孩子(不用管是左孩子还是右孩子)

执行完成这个代码后,相当于让上一层栈帧中的root的孩子

指向了一个New出来的节点。这样就完成了插入。

bool _InsertR(Node*& root, const T& val)
{if (root == nullptr){root = new Node(val);return true;}if (root->_val < val){_InsertR(root->_right, val);}else if (root->_val > val){_InsertR(root->_left, val);}//相同不能插入return false;
}

删除操作递归版本

删除的过程与非递归版本是一样的。

1)先找到删除的节点。

找到该节点后,该节点同样有三种情况:

  • 1)该节点是叶子节点
  • 2)该节点只有一个孩子
  • 3)该节点有两个孩子(需要找替代节点)

前面两种情况的处理方法是一样的。

2)判断该节点是属于上面三种的哪一种,如果是前面两种,只需要判断该节点的left为空还是right为空即可。

就相应地执行:

root = root->_right;
或者
root = root->_left;

这两个操作即可。
以为当前栈桢的root是上一层栈桢中root的孩子(不用管是做孩子还是右孩子)
这个代码的意思就是:
让上一层栈桢的root的left/right指向当前层栈桢的root的left/right

在这里插入图片描述

bool _EraseR(Node*& root, const T& val)
{if (root == nullptr){return false;}if (root->_val < val){return _EraseR(root->_right, val);}else if (root->_val > val)	{return _EraseR(root->_left, val);}//找到了else{Node* del = root;//同样有三种情况//这是因为root是上一个root的left/right的别名if (root->_left == nullptr){root = root->_right;}else if (root->_right == nullptr){root = root->_left;}else{//找到替代的节点Node* leftMax = root->_left;while (leftMax->_right){leftMax = leftMax->_right;}//找到之后,交换swap(leftMax->_val, root->_val);return _EraseR(root->_left, val);//不能这样//return _Erase(leftMax, val);//这样不能保证连接关系正确}delete del;return true;}
}

总结

本文章讲述了二叉搜索树的增删查改功能,其中有一些细节需要特别注意。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/102868.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

51单片机智能电风扇控制系统proteus仿真设计( 仿真+程序+原理图+报告+讲解视频)

51单片机智能电风扇控制系统仿真设计( proteus仿真程序原理图报告讲解视频&#xff09; 讲解视频1.主要功能&#xff1a;2.仿真3. 原理图4. 程序代码5.设计报告6. 设计资料内容清单 51单片机智能电风扇控制系统仿真设计( proteus仿真程序原理图报告讲解视频&#xff09; 仿真图…

如何把Android Framework学彻底?一条龙学习

Framework通俗易懂 平时学习 Android 开发的第一步就是去学习各种各样的 API&#xff0c;如 Activity&#xff0c;Service&#xff0c;Notification 等。其实这些都是 Framework 提供给我们的。Framework 层为开发应用程序提供了非常多的API&#xff0c;我们通过调用这些 API …

drone的简单使用

&#xff08;一&#xff09;简介 Drone 是一个基于Docker容器技术的可扩展的持续集成引擎&#xff0c;用于自动化测试、构建、发布。每个构建都在一个临时的Docker容器中执行&#xff0c;使开发人员能够完全控制其构建环境并保证隔离。开发者只需在项目中包含 .drone.yml文件&…

论文解读 | 基于中心的三维对象检测与跟踪

原创 | 文 BFT机器人 CenterPoint与传统基于框的3D物体检测器和跟踪器不同之处在于&#xff0c;它将3D物体表示、检测和跟踪为点&#xff0c;而不是使用边界框。这种方法具有几个优点&#xff0c;包括减少物体检测器的搜索空间&#xff0c;简化下游任务&#xff08;如跟踪&…

自然语言处理——数据清洗

一、什么是数据清洗 数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序&#xff0c;包括检查数据一致性&#xff0c;处理无效值和缺失值等。与问卷审核不同&#xff0c;录入后的数据清理一般是由计算机而不是人工完成。 ——百度百科 二、为什么要数据清洗 现实生…

分支创建查看切换

1、初始化git目录&#xff0c;创建文件并将其推送到本地库 git init echo "123" > hello.txt git add hello.txt git commit -m "first commit" hello.txt$ git init Initialized empty Git repository in D:/Git/git-demo/.git/ AdministratorDESKT…

无需编程经验,也能制作租车预约微信小程序,快速上手

现在&#xff0c;制作租车预约微信小程序不再需要编程经验&#xff0c;只需几个简单的步骤&#xff0c;您就可以拥有自己的租车预约微信小程序。在本文中&#xff0c;我们将介绍如何利用乔拓云网后台来制作租车预约微信小程序&#xff0c;并实现您所需的功能。 首先&#xff0c…

Android——数据存储(一)(二十一)

1. 数据存储 1.1 知识点 &#xff08;1&#xff09;掌握Android数据存储的分类&#xff1b; &#xff08;2&#xff09;可以使用SharedPreferences存储数据。 1.2 具体内容 对于我们数据的存储而言&#xff0c;Android一共提供了5个数据存储的方式&#xff1a;SharedPrefe…

远程工作面试:特殊情况下的面试技巧

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

JavaEE初阶(1)(冯诺依曼体系、CPU、CPU基本原理、如何衡量CPU的好坏?指令、操作系统、操作系统“内核”)

目录 冯诺依曼体系&#xff08;Von Neumann Architecture&#xff09; CPU CPU基本原理&#xff1a; 如何衡量CPU的好坏&#xff1f; 1、主频&#xff08;时钟速度&#xff09;&#xff1a; 2、核心数&#xff1a; 指令 操作系统 操作系统“内核” 冯诺依曼体系&#x…

十二、集合(5)

本章概要 for-in 和迭代器 适配器方法惯用法 本章小结 简单集合分类 for-in和迭代器 到目前为止&#xff0c;for-in 语法主要用于数组&#xff0c;但它也适用于任何 Collection 对象。实际上在使用 ArrayList 时&#xff0c;已经看到了一些使用它的示例&#xff0c;下面是它…

【2023高教社杯】B题 多波束测线问题 问题分析、数学模型及参考文献

【2023高教社杯】B题 多波束测线问题 问题分析、数学模型及参考文献 1 题目 1.1 问题背景 多波束测深系统是利用声波在水中的传播特性来测量水体深度的技术&#xff0c;是在单波束测深的基础上发展起来的&#xff0c;该系统在与航迹垂直的平面内一次能发射出数十个乃至上百个…