2023数学建模国赛E题黄河水沙监测数据分析完整代码分析+处理结果+思路文档

已经写出国赛E题黄河水沙监测数据分析完整代码分析+处理结果+思路分析(30+页),包括数据预处理、数据可视化(分组数据分布图可视化、相关系数热力图可视化、散点图可视化)、回归模型(决策树回归模型、随机森林回归、GBDT回归、支持向量机回归、全连接神经网络),后续持续更新。

完整代码+结果+思路文档下载地址见文末

E题 黄河水沙监测数据分析.... 2

问题1 分析与研究.... 3

目标1: 含沙量与时间、水位、水流量的关系.... 3

目标2: 并估算近6年该水文站的年总水流量和年总排沙量.... 3

第一步:结合问题1的目标,对数据进行与处理操作.... 3

第二步:数据可视化分析,查看数据之间的关系.... 4

分组数据分布图可视化.... 6

相关系数热力图可视化.... 12

散点图可视化.... 14

目标1:解决方案,建立回归模型,分析他们之间的关系,预测含沙量.... 23

模型1:决策树回归模型.... 24

模型2:随机森林回归.... 27

模型3: GBDT回归.... 29

模型4:支持向量机回归.... 29

模型5:全连接神经网络.... 30

问题2:解决方案,(估算近6年该水文站的年总水流量和年总排沙量)31

国赛E题数学建模题目如下:黄河是中华民族的母亲河。研究黄河水沙通量的变化规律对沿黄流域的环境治理、气候变化和人民生活的影响,以及对优化黄河流域水资源分配、协调人地关系、调水调沙、防洪减灾等方面都具有重要的理论指导意义。

附件1给出了位于小浪底水库下游黄河某水文站近 6年的水位、水流量与含沙量的实际监测数据,附件 2给出了该水文站近 6年黄河断面的测量数据,附件 3给出了该水文站部分监测点的相关数据。请建立数学模型研究以下问题:

问题1 研究该水文站黄河水的含沙量与时间、水位、水流量的关系,并估算近 6年该水文站的年总水流量和年总排沙量。

问题2 分析近 6年该水文站水沙通量的突变性、季节性和周期性等特性,研究水沙通量的变化规律。

问题3 根据该水文站水沙通量的变化规律, 预测分析该水文站未来两年水沙通量的变化趋势 ,并 为该水文站制订未来两年最优的采样监测方案(采样监测次数和具体时间等),使其既能及时掌握水沙通量的动态变化情况,又能最大程度地减少监测成本资源。

问题4 根据该水文站的水沙通量和河底高程的变化情况,分析每年 6 7月小浪底水库进行“调水调沙”的实际效果。如果不进行“调水调沙”, 10年以后该水文站的河底高程会如何?

问题分析

问题1 研究该水文站黄河水的含沙量与时间、水位、水流量的关系,并估算近 6年该水文站的年总水流量和年总排沙量。(完整文档和代码见文末地址)

首先导入相关库:

## 设置图像显示情况
%config InlineBackend.figure_format = "retina"
%matplotlib inline    
import seaborn as sns  ## 设置中文字体显示
sns.set(font= "SimSun",style="whitegrid",font_scale=1.4)
import matplotlib  ## 解决坐标轴的负号显示问题
matplotlib.rcParams['axes.unicode_minus']=False 
## 导入需要的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import missingno as msno 
from scipy import stats
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.stats.multicomp import pairwise_tukeyhsd
import plotly.express as px## 忽略提醒
import warnings
warnings.filterwarnings("ignore")

问题1 分析与研究

2023国赛数学建模E题问题1分析如下

首先是目标1: 含沙量与时间、水位、水流量的关系

子问题:含沙量与时间的关系、含沙量与水位的关系、含沙量与水流量的关系(注意,可以分别分析两者之间的关系建模,也可以分析一个和多个变量之间关系的建模)

分析方式和步骤可以是:(1)数据清洗与整理,得到感兴趣的数据,利用可视化辅助分析之间的关系,利用相关性分析、回归分析等模型,建立数据之间的定量关系。(完整文档和代码见文末地址)

接着是目标2: 并估算近6年该水文站的年总水流量和年总排沙量

子问题:总排沙量理论上可以通过水流量和含沙量计算得到。因此重点还是分析年总水流量与含沙量之间的情况。

分析方式和步骤可以是:(1)数据清洗与整理,得到感兴趣的数据,利用可视化辅助分析之间的关系,通过相应的计算,获取目标数据。

第一步:结合问题1的目标,对数据进行与处理操作

结合附件1中给出的数据特点,我们将提供的的数据量计精确到以天为单位的精度。

第二步:数据可视化分析,查看数据之间的关系

## 根据时间变量变化的数据散点图可视化## 水位的变化情况
plt.figure(figsize=(12,3))
p = sns.lineplot(data=dfq1, x="日期", y="水位",lw = 2)
plt.xlabel("时间")
plt.ylabel("水位(m)")
plt.title("")
plt.savefig('figs/水位的变化情况.png', dpi=300, bbox_inches='tight')
plt.show()## 流量的变化情况
plt.figure(figsize=(12,3))
p = sns.lineplot(data=dfq1, x="日期", y="流量",lw = 2)
plt.xlabel("时间")
plt.ylabel("流量("+"$m^3$"+"/s)")
plt.title("")
plt.savefig('figs/流量的变化情况.png', dpi=300, bbox_inches='tight')
plt.show()## 含沙量的变化情况
plt.figure(figsize=(12,3))
p = sns.lineplot(data=dfq1, x="日期", y="含沙量",lw = 2)
plt.xlabel("时间")
plt.ylabel("含沙量(kg/"+"$m^3$"+")")
plt.title("")
plt.savefig('figs/含沙量的变化情况.png',dpi=300,bbox_inches='tight')
plt.show()## 可以发现在含沙量等特征的变化情况

分组数据分布图可视化

针对含沙量数据,进一步的分析其随时间年份上的变化趋势

sns.swarmplot(data=dfq1, x="年", y="含沙量", hue="年")
plt.xlabel("年")
plt.ylabel("含沙量(kg/"+"$m^3$"+")")
plt.title("")
plt.savefig('figs/含沙量数据随时间年份上的变化趋势.png', dpi=300, bbox_inches='tight')
plt.show()## 可以发现2018-2021年,含沙量普遍偏高## 针对含沙量数据,进一步的分析其随时间月份上的变化趋势
plt.figure(figsize=(12,6))
sns.swarmplot(data=dfq1, x="月", y="含沙量", hue="月")
plt.xlabel("月")
plt.ylabel("含沙量(kg/"+"$m^3$"+")")
plt.title("")
plt.savefig('figs/含沙量数据随时间月份上的变化趋势.png', dpi=300, bbox_inches='tight')
plt.show()

从可视化图像,可以发现含沙量明显的受到年、月两个变量的影响,即受到时间的影响(完整代码见文末地址)

相关系数热力图可视化

(完整代码见文末地址)
Index(['年', '月', '日', '水位', '流量', '含沙量', '日期'], dtype='object')## 可以计算几个特征之间的相关系数,从而展示相关性的大小## 也可以特征之间的秩相关系数
corrdf = dfq1[["年","月","日","水位","流量","含沙量"]]
corrdfval = corrdf.corr(method = "pearson")
print(corrdfval)
## 可视化相关系数热力图
plt.figure(figsize=(10,8))
ax = sns.heatmap(corrdfval,square=True,annot=True,fmt = ".2f",linewidths=.5,cmap="YlGnBu",cbar_kws={"fraction":0.046, "pad":0.03})
ax.set_title("相关性(pearson)")
plt.savefig('figs/相关系数热力图.png', dpi=300, bbox_inches='tight')
plt.show()

可以发现, 含沙量与日无关,月年和月是弱相关性,与水位、流量的相关性较强(这里分析的是线性关系)

散点图可视化

2023数学建模国赛E题:可视化水位与含沙量之间的散点图

(完整代码见文末地址)
plt.figure(figsize=(12,6))
sns.scatterplot(data=dfq1,x="水位", y="含沙量",palette="Set1",s = 60)
plt.xlabel("水位(m)")
plt.ylabel("含沙量(kg/"+"$m^3$"+")")
plt.title("")
plt.savefig('figs/水位与含沙量之间的散点图1.png', dpi=300, bbox_inches='tight')
plt.show()## 可视化 水位月含沙量之间的散点图
# plt.figure(figsize=(12,6))
sns.lmplot(data=dfq1,x="水位", y="含沙量", palette="Set1",height=6,aspect=1.5)
plt.xlabel("水位(m)")
plt.ylabel("含沙量(kg/"+"$m^3$"+")")
plt.title("")
plt.savefig('figs/水位与含沙量之间的散点图2.png', dpi=300, bbox_inches='tight')
plt.show()plt.figure(figsize=(12,6))
sns.scatterplot(data=dfq1,x="水位", y="含沙量", hue="年",palette="Set1",s = 60)
plt.xlabel("水位(m)")
plt.ylabel("含沙量(kg/"+"$m^3$"+")")
plt.title("")
plt.savefig('figs/水位与含沙量之间的散点图3.png', dpi=300, bbox_inches='tight')
plt.show()

含沙量和流量之间可能并不是简单的线性关系,还受到其他特征的影响。而且和前面与水位之间的数据分布很相似(可能使用其中的一个就能很好的表达含沙量)

目标1:解决方案,建立回归模型,分析他们之间的关系,预测含沙量

from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor
from sklearn.svm import SVR,LinearSVR
from sklearn.tree import *
from sklearn.metrics import *
from sklearn.neural_network import MLPRegressor
from sklearn.model_selection import  train_test_split
from sklearn.preprocessing import StandardScaler
import graphviz
import pydotplus
from IPython.display import Image  
from io import StringIO

模型1:决策树回归模型

建立决策树回归模型对数据进行预测,使用默认参数

从模型对因变量的预测效果可以知道,模型很好的预测了数据的变化趋势

分析不同深度下在训练集和测试机上的预测精度

除了模型1:决策树回归模型外,后续还有模型2:随机森林回归、模型3: GBDT回归、模型4:支持向量机回归、模型5:全连接神经网络。

完整代码+结果+思路文档下载:2023数学建模国赛E题完整代码和文档

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/103185.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法刷题记录-双指针/滑动窗口(LeetCode)

809. Expressive Words 思路 根据题目描述,我们可以知道,如果要将某个单词定义为可扩张(stretchy),需要满足如下两个条件: 所以,我们在实现的时候,可以通过两个指针p1和p2&#x…

QTableView通过setColumnWidth设置了列宽无效的问题

在用到QT的QTableView时,为了显示效果,向手动的设置每一列的宽度,但是如下的代码是无效的。 ui->tableView->setColumnWidth(0,150);ui->tableView->setColumnWidth(1,150);ui->tableView->setColumnWidth(2,150);ui->t…

OpenCV(二十九):图像腐蚀

1.图像腐蚀原理 腐蚀操作的原理是将一个结构元素(也称为核或模板)在图像上滑动,并将其与图像中对应位置的像素进行比较。如果结构元素的所有像素与图像中对应位置的像素都匹配,那么该位置的像素值保持不变。如果结构元素的任何一个…

WireShark抓包工具的安装

1.下载安装包 在官网或者电脑应用商城都可以下载 2.安装 打开安装包,点击next 点击next 选择UI界面,两种都装上 根据习惯选择 选择安装位置点击安装 开始安装安装成功

【python爬虫】14.Scrapy框架讲解

文章目录 前言Scrapy是什么Scrapy的结构Scrapy的工作原理 Scrapy的用法明确目标与分析过程代码实现——创建项目代码实现——编辑爬虫代码实现——定义数据代码实操——设置代码实操——运行 复习 前言 前两关,我们学习了能提升爬虫速度的进阶知识——协程&#xf…

Android逆向学习(番外一)smali2java部分文件无法反编译的bug与修复方法

Android逆向学习(番外一)smali2java部分文件无法反编译的bug与修复方法 一、前言 昨天我和往常一样准备着android逆向(四)的博客,结果发现smali2java对某些文件无法进行逆向,我不知道windows会不会产生这…

ajax实现百度一下模糊查询功能

1、效果 如下图所示,我们在输入大学时,程序会到后端查询名字中包含大学的数据,并展示到前端页面。 用户选择一个大学,该大学值会被赋值到input表单,同时关闭下拉表单; 当页面展示的数据都不符合条件时&…

计算机视觉领域经典模型汇总(2023.09.08

一、RCNN系列 1、RCNN RCNN是用于目标检测的经典方法,其核心思想是将目标检测任务分解为两个主要步骤:候选区域生成和目标分类。 候选区域生成:RCNN的第一步是生成可能包含目标的候选区域,RCNN使用传统的计算机视觉技术&#x…

2023.9.7 关于 TCP / IP 的基本认知

目录 网络协议分层 TCP/IP 五层(四层)模型 应用层 传输层 网络层(互联网层) 数据链路层(网络接口层) 物理层 网络数据传输的基本流程 网络协议分层 为什么需要分层? 分层之后&#xff0c…

linux--进程--system与popen函数

1.system #include <stdlib.h>int system(const char *command); 返回值&#xff1a; 成功&#xff0c;则返回进程的状态值&#xff1b;不能源码execl函数&#xff0c;返回127&#xff1b;失败返回-1&#xff1b; 不能成功运行分析文章&#xff1a;linux下system函数详…

Ubuntu18.04系统下通过ROS控制Kinova真实机械臂-多种实现方式

所用测试工作空间test_ws&#xff1a;包含官网最原始的功能包 一、使用Kinova官方Development center控制真实机械臂 0.在ubuntu系统安装Kinova机械臂的Development center&#xff0c;这一步自行安装&#xff0c;很简单。 1.使用USB连接机械臂和电脑 2.Development center…

【jmeter】连接mysql无法使用executeQuery()

Can not issue data manipulation statements with executeQuery(). 翻译为&#xff1a; 在这里插入图片描述 看一下JDBC Request里的Query Type 改为Prepared Updata Statement&#xff0c;改完再试一下