将 Python 与 RStudio IDE 配合使用(R与Python系列第一篇)

目录

前言:

1-安装reticulate包

2-安装Python

3-选择Python的默认版本(配置Python环境)

4-使用Python

4.1 运行一个简单的Python脚本

4.2 在RStudio上安装Python模块

4.3 在 R 中调用 Python 模块

4.4 在RStudio上调用Python脚本写的函数

4.5 Python 与 R 对象相互转换的方式

R → Python

Python → R

5-在 R Console 中交互式运行 R

6-在RStudio中安装Python包遇到问题时解决方案

参考:

前言:

RStudio 1.4为RStudio IDE带来了对Python编程语言的改进支持。本文将探讨如何将Python与R和RStudio一起使用。

RStudio使用 R包reticulate 与Python交互,因此RStudio的Python集成需要:

  1. 安装 Python (2.7 or newer; 3.5 or newer preferred), and
  2. 安装R包reticulate (1.20 or newer, as available from CRAN)

1-安装reticulate包

install.packages("reticulate")

2-安装Python

首先,需要在您的机器上安装Python。如果您还没有安装Python,可以通过几种方式安装它:

  1. (推荐)使用reticulate::install_miniconda(),使用reticulate包安装Python的Miniconda发行版;
  2. (Windows)通过https://www.python.org/downloads/windows/提供的官方Python二进制文件安装Python;
  3. (macOS)通过https://www.python.org/downloads/mac-osx/提供的官方Python二进制文件安装Python;
  4. (Linux)从源代码安装Python,或者通过操作系统的包管理器提供的Python版本安装Python。有关详细信息,请参阅https://docs.python.org/3/using/unix.html。如果您自己从源代码安装Python,最好将其安装到 /opt/python/<version>之类的位置,这样RStudio和reticullate可以更容易地发现它。

3-选择Python的默认版本(配置Python环境)

一定要配置Python环境,不然在RStudio不能成功Python包。

可以通过Tools->Global Options…->Python配置默认版本的Python以与RStudio一起使用:

Python解释器也就是Python,这一步是选择Python的默认版本。

“Python解释器(Python interpreters):”输入框显示要使用的默认Python解释器(如果有)。如果您已经知道要使用的Python解释器的位置,您可以在该输入框中键入解释器的位置。

否则,如果输入框中没有显示默认Python解释器,可以通过单击“选择…”按钮在系统上发现Python解释器:

RStudio将通过几种不同的方法搜索Python解释器:

  • On the PATH;
  • For virtual environments, located within the ~/.virtualenvs folder;
  • For Conda environments, as reported by conda --list,
  • For pyenv Python installations located in ~/.pyenv,
  • For Python installations located in /opt/python.

测试环境:

py_available() #检测Python是否安装成功,返回TRUE即表示安装成功

4-使用Python

4.1 运行一个简单的Python脚本

reticulate包可以在当前运行的R会话中加载和使用Python。安装reticulate包后,可以打开Python脚本(扩展名为. py),并执行其中的代码,类似于R。

注意到:在控制台(console)中,>表示运行R代码,>>>表示运行的Python代码。

请注意,RStudio使用reticulate Python REPL来执行代码,并根据正在执行的脚本在R和Python之间自动切换。

当reticulate REPL处于活动状态时,可以通过r辅助对象访问R会话中的对象。例如,r["mtcar"]可用于从R访问mtcar数据集,并将其转换为pandas DataFrame(如果可用),如果没有,则转换为Python dictionary。

4.2 在RStudio上安装Python模块

以pandas模块为例:

reticulate::py_install("pandas")

# 安装seaborn绘图库
# pip = T指定从pip安装,默认从conda安装
py_install("seaborn", pip = T)# 查看seaborn模块是否已安装
py_module_available("seaborn")
> [1] TRUE

4.3 在 R 中调用 Python 模块

 例子1:

# 调用os模块的listdir()函数
os <- import("os")
os$listdir("./")
>  [1] ".Rproj.user"      "convert.R"        "reticulate.Rmd"   "Reticulate.Rproj"
>  [5] "Rscript.R"        "summary.html"     "summary.md"       "summary.nb.html" 
>  [9] "summary.Rmd"      "test_pyscript.py"

 例子2:

# 调用seaborn模块的load_dataset()函数
# 需要seaborn模块已安装
sns <- import("seaborn")
tips <- sns$load_dataset("tips")
print(head(tips))
>   total_bill  tip    sex smoker day   time size
> 1      16.99 1.01 Female     No Sun Dinner    2
> 2      10.34 1.66   Male     No Sun Dinner    3
> 3      21.01 3.50   Male     No Sun Dinner    3
> 4      23.68 3.31   Male     No Sun Dinner    2
> 5      24.59 3.61 Female     No Sun Dinner    4
> 6      25.29 4.71   Male     No Sun Dinner    4

4.4 在RStudio上调用Python脚本写的函数

想法与在RStudio中调用C++自定义函数一样。建议编写的Python自定义函数名与Python脚本名称一样,这样通过source_python()函数调用这个Python自定义函数,这意味着Python自定义函数可以在RStudio中不变函数名使用,使用的其实时同名的R函数。

例子1:

(1)在Python环境下,编写一个Python脚本,保存为flights.py。可以看到这个python函数名为read_flights().

import pandas
def read_flights(file):flights = pandas.read_csv(file)flights = flights[flights['dest'] == "ORD"]flights = flights[['carrier', 'dep_delay', 'arr_delay']]flights = flights.dropna()return flights

(2)在RStudio中使用source_python调用实现写好的flight.py文件。

source_python("flights.py")
flights <- read_flights("flights.csv") #使用flights.py脚本中的Python自定义函数library(ggplot2)
ggplot(flights, aes(carrier, arr_delay)) + geom_point() + geom_jitter()

 例子2:

假设 Python 脚本为test_pyscript.py,内容如下:

# 打印一些数据
for i in range(10):print("hello world)# 定义1个函数
def sum_two_value(a, b):return a + b

在 R 中执行 test_pyscript.py 

source_python("./test_pyscript.py")> hello world
> hello world
> hello world
> hello world
> hello world
> hello world
> hello world
> hello world
> hello world
> hello worldsum_two_value(1, 2)
> [1] 3

4.5 Python 与 R 对象相互转换的方式

R → Python

设置一些R对象:

A <- 1B <- c(1, 2, 3)C <- c(a = 1, b = 2, c = 3)D <- matrix(1:4, nrow = 2)E <- data.frame(a = c(1, 2), b = c(3, 4))G <- list(1, 2, 3)H <- list(c(1, 2), c(3, 4))I <- list(a = c(1, 2), b = c(3, 4))J <- function(a, b) {return(a + b)
}K1 <- NULL
K2 <- T
K3 <- F

上述 R 对象转为 Python 对象(Python Cell)

r.A
> 1.0
type(r.A)
> <class 'float'>
r.B
> [1.0, 2.0, 3.0]
type(r.B)
> <class 'list'>
r.C
> [1.0, 2.0, 3.0]
type(r.C)
> <class 'list'>
r.D
> array([[1, 3],
>        [2, 4]])
type(r.D)
> <class 'numpy.ndarray'>
r.E
>      a    b
> 0  1.0  3.0
> 1  2.0  4.0
type(r.E)
> <class 'pandas.core.frame.DataFrame'>
r.G
> [1.0, 2.0, 3.0]
type(r.G)
> <class 'list'>
r.H
> [[1.0, 2.0], [3.0, 4.0]]
type(r.H)
> <class 'list'>
r.I
> {'a': [1.0, 2.0], 'b': [3.0, 4.0]}
type(r.I)
> <class 'dict'>
r.J
> <function make_python_function.<locals>.python_function at 0x000001AE204ECE18>
type(r.J)
> <class 'function'>
r.J(2, 3)
> 5
r.K1
type(r.K1)
> <class 'NoneType'>
r.K2
> True
type(r.K2)
> <class 'bool'>
r.K3
> False
type(r.K3)
> <class 'bool'>

Python → R

设置一些 Python 对象(Python Cell)

A = 1B = [1, 2, 3]C = [[1, 2], [3, 4]]D1 = [[1], 2, 3]
D2 = [[1, 2], 2, 3]E = (1, 2, 3)FF = ((1, 2), (3, 4))G = ((1, 2), 3, 4)H = {"a": [1, 2, 3], "b": [2, 3, 4]}I = {"a": 1, "b": [2, 3, 4]}def J(a, b):return a + b

 上述 Python 对象转为 R 对象(R Cell)

py$A
> [1] 1
class(py$A)
> [1] "integer"py$B
> [1] 1 2 3
class(py$B)
> [1] "integer"py$C
> [[1]]
> [1] 1 2
> 
> [[2]]
> [1] 3 4
class(py$C)
> [1] "list"py$D1
> [[1]]
> [1] 1
> 
> [[2]]
> [1] 2
> 
> [[3]]
> [1] 3
class(py$D1)
> [1] "list"
py$D2
> [[1]]
> [1] 1 2
> 
> [[2]]
> [1] 2
> 
> [[3]]
> [1] 3
class(py$D2)
> [1] "list"py$E
> [[1]]
> [1] 1
> 
> [[2]]
> [1] 2
> 
> [[3]]
> [1] 3
class(py$E)
> [1] "list"py$FF
> [[1]]
> [[1]][[1]]
> [1] 1
> 
> [[1]][[2]]
> [1] 2
> 
> 
> [[2]]
> [[2]][[1]]
> [1] 3
> 
> [[2]][[2]]
> [1] 4
class(py$FF)
> [1] "list"py$G
> [[1]]
> [[1]][[1]]
> [1] 1
> 
> [[1]][[2]]
> [1] 2
> 
> 
> [[2]]
> [1] 3
> 
> [[3]]
> [1] 4
class(py$G)
> [1] "list"py$H
> $a
> [1] 1 2 3
> 
> $b
> [1] 2 3 4
class(py$H)
> [1] "list"py$I
> $a
> [1] 1
> 
> $b
> [1] 2 3 4
class(py$I)
> [1] "list"py$J
> <function J at 0x000001AE204ECE18>
class(py$J)
> [1] "python.builtin.function" "python.builtin.object"
py$J(2, 3)
> [1] 5

5-在 R Console 中交互式运行 R

  • repl_python () 进入 Python 环境
  • exit 退出 Python 环境

6-在RStudio中安装Python包遇到问题时解决方案

问题:No module named 'tensorflow_probability' 

通过在新的R会话中运行以下操作可以解决许多安装问题(您可以使用Ctrl+Shift+F10在Rdios中重新启动R):

# install the development version of packages, in case the
# issue is already fixed but not on CRAN yet.
install.packages("remotes")
remotes::install_github(sprintf("rstudio/%s", c("reticulate", "tensorflow", "keras")))
reticulate::miniconda_uninstall() # start with a blank slate
reticulate::install_miniconda()
tfprobability::install_tfprobability()

 注意:其中在miniconda_uninstall() 卸载之前安装的miniconda时,要将RStudio中Tools-->Global Options--->Python-->将Python interpreter(Python解释器)清除掉。(注:下图是已经清除掉的界面,如果没有执行清楚操作,Python interpreter输入框中是有内容的)。

参考:

https://support.posit.co/hc/en-us/articles/1500007929061 (给出了在RStudio中配置Python环境的最简单方法)

🤔 Reticulate | 如何在Rstudio中优雅地调用Python!? - 知乎 (zhihu.com) (给出了安装Python包的命令)

No module named 'tensorflow_probability' · Issue #155 · rstudio/tfprobability · GitHub (安装包遇到问题时的解决办法)

reticulate:在R中使用Python - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/103621.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++编译静态成员函数报错: “osgGA::DriveManipulator::setEye”: 非静态成员函数的非法调用

来看代码 .h文件中 static void computePosition(const osg::Vec3d& eye,const osg::Vec3d& lv,const osg::Vec3d& up); void setEye(const osg::Vec3d& eye); void setRotation( const osg::Quat& rotation );osg::Vec3d _eye; osg::Quat _rotation…

浏览器连不上 Flink WebUI 8081 端口

安装 flink-1.17.0 后&#xff0c;start-cluster.sh 启动&#xff0c;发现浏览器连不上 Flink WebUI 的8081端口。 问题排查&#xff1a; command R&#xff0c;输入cmd&#xff0c;检查宿主机能否ping通虚拟机&#xff0c;发现能ping通。 检查是否有flink以外的任务占用8081…

论文阅读《Nougat:Neural Optical Understanding for Academic Documents》

摘要 科学知识主要存储在书籍和科学期刊中&#xff0c;通常以PDF的形式。然而PDF格式会导致语义信息的损失&#xff0c;特别是对于数学表达式。我们提出了Nougat&#xff0c;这是一种视觉transformer模型&#xff0c;它执行OCR任务&#xff0c;用于将科学文档处理成标记语言&a…

Android 10.0 禁用adb shell input输入功能

1.前言 在10.0的产品开发中,在进行一些定制开发中,对于一些adb shell功能需要通过属性来控制禁止使用input 等输入功能,比如adb shell input keyevent 响应输入事件等,所以就需要 熟悉adb shell input的输入事件流程,然后来禁用adb shell input的输入事件功能,接下来分…

基于STM32设计的格力空调遥控器

一、格力空调协议介绍 格力空调的红外控制协议被称为格力红外通讯协议或者格力红外遥控协议。这个协议定义了一系列红外信号&#xff0c;可以用来控制格力空调的各种操作&#xff0c;例如开关、温度控制、模式选择、风速控制等等。 格力空调的红外控制协议是一种自定义协议&a…

企业架构LNMP学习笔记14

默认官方模块&#xff1a; Gzip压缩&#xff1a; 压缩文件&#xff0c;使文件变小了&#xff0c;传输更快了&#xff0c;目前大部分市场浏览器都支持Gzip。 传输的时候省流量。 目的是为了提高用户的加载速度。 #开启gzip压缩 gzip on; #http协议版本 gzip_http_version 1.0…

Java虚拟机反射机制

1 什么是Java虚拟机反射机制&#xff1f; 虚拟机在运行期间&#xff0c;对于任何一个类&#xff0c;我们都能知道其内部信息&#xff0c;包括属性&#xff0c;方法&#xff0c;构造函数&#xff0c;实现接口&#xff1b;对于任何一个对象&#xff0c;我们都能获取其字段值、调…

Java(二)数据类型与变量以及运算符

数据类型与变量以及运算符 二、数据类型与变量&#xff08;重要&#xff09;2.数据类型2.1 基本数据类型 1.变量与常量1.1常量&#xff08;字面常量&#xff09;1.2变量数据类型小总结 三、运算符1.运算符号&#xff08;重要&#xff09;1.1计算运算符1.2增量运算符1.3 自增或自…

LeetCode 1126.查询活跃业务

数据准备 Create table If Not Exists Events (business_id int, event_type varchar(10), occurences int); Truncate table Events; insert into Events (business_id, event_type, occurences) values (1, reviews, 7); insert into Events (business_id, event_type, occu…

智能井盖传感器:高效守护城市道路安全

近年来&#xff0c;井盖出问题导致事故的报道时有发生&#xff0c;但却容易被公众所忽视。井盖作为城市基础设施的一部分&#xff0c;主要用于保护下方的供水管道、下水道以及电信线缆等。然而&#xff0c;由于长时间使用、缺乏维护、设计不合理等原因&#xff0c;井盖出现问题…

zookeeper/HA集群配置

1.zookeep配置 1.1 安装4台虚拟机 &#xff08;1&#xff09;按照如下设置准备四台虚拟机&#xff0c;其中三台作为zookeeper&#xff0c;配置每台机器相应的IP&#xff0c;hostname&#xff0c;下载vim&#xff0c;ntpdate配置定时器定时更新时间&#xff0c;psmisc&#xff…

【Docker】Docker的使用案例以及未来发展、Docker Hub 服务、环境安全的详细讲解

Docker的工具实践及root概念和Docker容器安全性设置 1. 使用案例2. Docker解决的问题3. Docker未来发展4. Docker Hub 服务5. 技术局限6. Docker环境安全7. 容器部署安全 1. 使用案例 Docker是一个命令行工具&#xff0c;它提供了中央“docker”执行过程中所需的所有工具。这使…