二叉树的顺序结构以及堆的实现——【数据结构】

W...Y的主页 😊

代码仓库分享  💕


上篇文章,我们认识了什么是树以及二叉树的基本内容、表示方法……接下来我们继续来深入二叉树,感受其中的魅力。

目录

 二叉树的顺序结构

堆的概念及结构

堆的实现  

堆的创建 

堆的初始化与释放空间 

堆的插入

堆的删除

 堆实现的代码接口,以及简单函数的直接实现


 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

 顺序存储又叫数组存储,是指一层一层存入数组中去。物理层面上是一个数组,在逻辑上面是一个二叉树!!!

而在顺序存储中有一些规律

通过父节点可以找到自己左右两个孩子:

左孩子:leftchild = parent*2+1;

右孩子:rightchild = parent*2+2; 

通过孩子节点可以找到父节点:

parent = (child-1)/2;

因为我们将数据按照二叉树的规律存入数组中(从上到下、从左往右)所以父节点与子节点就有一些特殊的规律,这个是我们经常会用到的,需要我们熟记于心!!!

总结:如果强行将一个普通的二叉树用数组存储,会浪费许多空间。所以只有满二叉树与完全二叉树才可以进行数组顺序存储。 

堆的概念及结构

这个堆与操作系统中的堆不同,操作系统将内存存储划分为栈区、堆区、静态区……而这个堆是一种数据结构。 

堆的概念:

如果有一个关键码的集合K = {k0 ,k1 ,k2 ,…,kn-1 },把它的所有元素按完全二叉树的顺序存储方式存储
在一个一维数组中,并满足:  ki<=k(2*i+1) 且ki <=k(2*i+2) ( ki>=k(2*i+1) 且 ki>=k(2*i+2)) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。(以上k后面的数字以及表达式全部为角标i)
堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。 

小堆:树中任何一个父亲的值都<=孩子的值

大堆:树中任何一个父亲的值都>=孩子的值

小堆那堆的底层数组是否为升序呢? 

不一定!

这个堆转换成数组为:10 15 56 25 30 70明显不是升序,堆只能保证父亲小于(大于)孩子,并不是与堂兄第比较。但是我们可以发现小堆的根是整棵树中最小值

所以我们可以利用发现解决topk问题与堆排序。

堆排序是非常快的,时间复杂度只有O(N*logN)

堆的实现  

堆的创建 

想要实现堆,我们先来表示堆,堆的创建其实就与顺序表大同小异,因为在物理层面上就是一个数组。

typedef int HPDataType;
typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;

创建指针指向将要动态开辟的数组中,size记录有效存储数据个数,capacity记录开辟空间大小。

堆的初始化与释放空间 

还是与顺序表相同,我们将堆中指针置空,size与capacity赋值0即可。

void HeapInit(HP* php)
{assert(php);php->a = NULL;php->size = 0;php->capacity = 0;
}

 释放空间也非常简单,free掉开辟的空间,指针置空,size与capacity赋值0即可。

void HeapDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}

堆的插入

堆的实现原理是数组,所以我们使用尾插非常方便。但是堆的要求是父亲节点必须大于或小于孩子节点,所以我们在插入时有很多情况。就以小堆为例:

这里最坏的情况就是插入一个数,最后与根交换才能成为小堆。这里我们可以创建一个向上调整函数,当插入一个数据时,我们得进行比较调换让其继续保存小堆!!!

void AdjustUp(HPDataType* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}

我们传入这个数组,再将新插入的数据下标给予向上调整函数,利用二叉树在数组中存储的规律找到父节点进行比较,如果子节点小于父节点则break退出循环,反之子节点大于父节点进行交换继续寻找交换后的父节点进行比较,直到满足小堆或child>0结束循环。

Swap交换函数: 

void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType tmp = *p1;*p1 = *p2;*p2 = tmp;
}

而创建插入函数就与顺序表极为相似,先判断空间是否足够,然后将新的数据插入数组中,最后调用向上调整判断是否满足小堆条件。

void HeapPush(HP* php, HPDataType x)
{assert(php);if (php->capacity == php->size){int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newcapacity);if (tmp == NULL){perror("realloc");exit(-1);}php->a = tmp;php->capacity = newcapacity;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);
}

堆的删除

堆的删除中,我们删除数组的尾元素就没有意义,所以一般删除堆是删除堆顶元素。那怎么删除才能保证满足小堆条件呢?

我们不能直接将堆顶元素删除,然后将数组中的其他元素往前挪一位,这样有极大的可能不满足堆的条件。如果按照上述方法继续进行,然后从新使用向上调整进行排序这样时间复杂度会很高,那有什么方法可以优化呢?

我们可以将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调
整算法。

将堆顶的元素交换到下面去先进行尾删覆盖,再进行向下调整就可以完成堆顶的删除。

那如何创建向下调整函数呢?

我们先创建将数组指针进行接收,然后传入数组的大小以及已经交换过需要调整元素的下标0

然后通过二叉树在数组中存储的规律找到左孩子节点,让左孩子与右孩子进行比较,谁小谁才有机会与父节点进行比较交换。以此类推即可满足小堆要求。

void AdjustDown(HPDataType* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (child + 1 < n && a[child + 1] < a[child]){child++;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}

特别注意:我们在找到左孩子节点之后,要让左孩子与右孩子进行比较时,我们必须要加入限制条件child+1<n,否则会造成数组越界访问的后果!!!

而删除堆函数就非常简单了,只需要将头与尾进行交换后调用向下调整函数即可。

void HeapPop(HP* php)
{assert(php);assert(php->size > 0);Swap(&php->a[0], &php->a[php->size - 1]);--php->size;AdjustDown(php->a, php->size, 0);
}

 堆实现的代码接口,以及简单函数的直接实现

typedef int HPDataType;
typedef struct Heap
{
HPDataType* _a;
int _size;
int _capacity;
}Heap;
// 堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n);
// 堆的销毁
void HeapDestory(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp)
{assert(php);assert(php->size > 0);return php->a[0];
}
// 堆的判空
int HeapEmpty(Heap* hp);
{assert(hp);return hp->size == 0;
}

以上就是二叉树的顺序结构以及堆排序实现的全部内容,下一篇文章我们就要学习关于堆最经典的堆排序以及topk问题,敬请期待。

感谢大家观看,一键三连是对博主最大的鼓励,博主因为你们的阅读而开心,希望博主的分享可以帮助许多人❤️❤️❤️

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/106598.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

盲打键盘的正确指法指南

简介 很多打字初学者&#xff0c;并不了解打字的正确指法规范&#xff0c;很容易出现只用两根手指交替按压键盘的“二指禅”情况。虽然这样也能实现打字&#xff0c;但是效率极低。本文将简单介绍盲打键盘的正确指法&#xff0c;以便大家在后续的学习和工作中能够提高工作效率…

LINUX 用户和组操作

目录 一、用户和组的分类 1、用户分类 2、组的分类 3、用户和组的配置文件 二、用户管理 1、添加用户 2、修改用户信息 3、修改用户密码 4、用户间切换 5、删除用户账号 6、sudo命令提高普通用户权限 三、用户组管理 1、创建用户组 2、修改用户组的属性 3、添加…

智慧安防/视频分析云平台EasyCVR不显示告警图片该如何解决?

安防视频监控平台EasyCVR可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安防视频监控的能力&#xff0c;也…

选择排序——直接选择排序

直接选择排序&#xff1a;&#xff08;以重复选择的思想为基础进行排序&#xff09; 1、简述 顾名思义就是选出一个数&#xff0c;再去抉择放哪里去。 设记录R1&#xff0c;R2…&#xff0c;Rn&#xff0c;对i1&#xff0c;2&#xff0c;…&#xff0c;n-1&#xff0c;重复下…

【docker快速部署微服务若依管理系统(RuoYi-Cloud)】

工作原因&#xff0c;需要一个比较完整的开源项目测试本公司产品。偶然发现RuoYi-Cloud非常适合&#xff0c;它有足够多的中间件&#xff0c;而且官方提供docker安装&#xff0c;但我本人在安装过程中遇到了很多坑&#xff0c;在这里记录一下防止下次会再次遇到。 项目地址 ht…

2023-9-11 拆分-Nim游戏

题目链接&#xff1a;拆分-Nim游戏 #include <iostream> #include <cstring> #include <algorithm> #include <unordered_set>using namespace std;const int N 110;int f[N];int sg(int x) {if(f[x] ! -1) return f[x];unordered_set<int> S;f…

从零开发一款ChatGPT VSCode插件

‍本文作者是360奇舞团开发工程师 引言 OpenAI发布了ChatGPT&#xff0c;就像是给平静许久的互联网湖面上扔了一颗重磅炸弹&#xff0c;刹那间所有人都在追捧学习它。究其原因&#xff0c;它其实是一款真正意义上的人工智能对话机器人。它使用了深度学习技术&#xff0c;通过大…

比较Visual Studio Code中的文件

目录 一、比较两个文件 1.1VS code中的文件大致分为两类&#xff1a; 1.2如何比较VS code中的两个文件&#xff1f; 二、并排差异模式&#xff1a;VS code中的一种差异模式 三、内联差异模式&#xff1a;VS code中的另一种差异模式 四、VS code忽略在行首或者行尾添加或删除…

C# 实现电子签名

本项目基于Emgu.CV&#xff08;C#下OpenCv的封装&#xff09;开发的&#xff0c;编译器最新版Vs2022&#xff0c;编译环境x86 直接看效果图 1.主页面 2.我们先看手写的方式&#xff1a; 点击确认就到主界面&#xff0c;如下 &#xff1a; 点击自动适配-&#xff0c;再点击生成…

django configparser.NoSectionError: No section: ‘Samples

django configparser.NoSectionError: No section: Samples 背景&#xff1a;Windows下的Django项目&#xff0c;重新部署至Linux ubuntu20中。 samples_white_list eval(config.get(‘Samples’, ‘samples_white_list’)) File “/home/hhl/anaconda3/envs/django/lib/pytho…

13-JVM调优实战-3

上一篇&#xff1a;12-JVM调优实战-2 今天来介绍一款阿里巴巴的调优工具。 Arthas详解 Arthas 是 Alibaba 在 2018 年 9 月开源的 Java 诊断工具。支持 JDK6&#xff0c; 采用命令行交互模式&#xff0c;可以方便的定位和诊断线上程序运行问题。Arthas 官方文档十分详细&am…

C++学习之list的实现

在了解学习list实现之前我们首先了解一下关于迭代器的分类&#xff1a; 按功能分类&#xff1a; 正向迭代器 反向迭代器 const正向迭代器 const反向迭代器 按性质分类&#xff1a; 单向迭代器 只能 例如单链表 双向迭代器 可&#xff0c;也可-- 例如双…