量化:基于支持向量机的择时策略

文章目录

  • 参考
  • 机器学习简介
  • 策略简介
  • SVM简介
  • 整体流程
    • 收集数据
    • 准备数据
    • 建立模型
    • 训练模型
    • 测试模型
    • 调节参数

参考

Python机器学习算法与量化交易
利用机器学习模型,构建量化择时策略

机器学习简介

机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。

机器学习的常见算法包括:决策树、朴素贝叶斯、支持向量机、随机森林、人工神经网络、深度学习等。

策略简介

输入沪深300的行情数据到支持向量机中进行模型训练,预测沪深指数第二天的涨跌。

Why SVM?
因为数据集为沪深300的日线行情数据,总共只有几千个交易日(样本点),而SVM的小样本预测准确率较高,并且能够解决非线性分类问题,所以比较适合。

SVM简介

SVM最初的设计用来解决二分类问题(比如沪深指数的涨和跌),通过寻找一个最大间隔超平面(图中黑色斜线)将两类样本线性区分开,并保证两侧样本的最近边缘点到这个平面的距离最大,由于最大间隔超平面仅取决于两个类别的边缘点,例如上图中被红线和蓝线穿过的红点和蓝点,这些点就被称为支持向量。
在这里插入图片描述数据集并非总是线性可分的,如下图。

在这里插入图片描述对数据非线性可分的情况,SVM引入了核函数,将低维不可分的数据映射到线性可分的高维,如下。
在这里插入图片描述
常用的核函数有
在这里插入图片描述但在现实当中,由于噪声和极端样本点的存在,数据集无论在低维还是高维都可能出现线性不可分的情况,于是乎,SVM当中引入了松弛变量的概念,允许了最大间隔超平面不用完美区分两个类别,允许错误分类的存在,SVM通过惩罚系数C控制这些错误分类的容忍程度,C值越高分类准确率越高,但数值过高容易导致过拟合,C值过低则会导致准确率受损。

整体流程

收集数据

tushare接口

准备数据

借助TA-lib库,计算以下因子:

  • EMA:加权的指数移动平均线,更重视近期值,反应价格在某个时间段的趋势。
  • 价格波动率:衡量价格波动幅度的大小。
  • 价格斜率:衡量价格走势的变化速度。
  • RSI:衡量股价走势力量和速度,基于价格变动的大小和速度,通过计算最近一段时间内股价涨跌幅度的平均值,将过去一段时间内的涨跌幅度转化为0到100之间的数值。
  • 威廉指标值:通过分析一段时间内的最高价、最低价和收盘价之间的关系来衡量市场波动的强度,在判断超买和超卖状况方面有较好的效果。

给每个样本点打上标签,计算出每个样本点第二天的涨幅,如果涨则设置标签为1,跌则设置标签为0。

建立模型

使用SVM模型

训练模型

  1. 将数据集的80%作为训练集,剩余20%作为测试集。
  2. 对数据集进行标准化处理,(原始值 - 均值) / 标准差,以尽量消除不同因子量纲的差别(如EMA均值为2919.6,而RSI均值为52.7)。
  3. 将训练集数据输入SVM中:实例化sklearn的svm后,把训练集因子数据和对应标签传入fit函数,惩罚系数1.0,核函数为RBF,开始训练。

测试模型

调节参数

现在使用的5个因子,还没有反应到价格波动的本质,还可以增改更多的因子。

还比如说,SVM模型当中的惩罚系数C过小,对错误样本的容忍度过高,RBF核函数不适合作为这个数据集的映射转换函数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/107420.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python实现机器学习(下)— 数据预处理、模型训练和模型评估

前言:Hello大家好,我是小哥谈。本门课程将介绍人工智能相关概念,重点讲解机器学习原理机器基本算法(监督学习及非监督学习)。使用python,结合sklearn、Pycharm进行编程,介绍iris(鸢尾…

时间序列论文-聚类和异常检测(二)

同样摘自知乎的回答:https://www.zhihu.com/question/29507442/answer/1212624591?utm_id0 正巧之前做过时间序列 的异常检测项目,这里介绍几种尝试过的方法,也算是抛砖引玉 吧,欢迎大家讨论交流~ 背景与定义 时间序列异常 检测…

【C++ • STL • 力扣】详解string相关OJ

文章目录 1、仅仅翻转字母2、字符串中的第一个唯一字符3、字符串里最后一个单词的长度4、验证一个字符串是否是回文5、字符串相加总结 ヾ(๑╹◡╹)ノ" 人总要为过去的懒惰而付出代价 ヾ(๑╹◡╹)ノ" 1、仅仅翻转字母 力扣链接 代码1展示&…

Gitlab仓库部署

Gitlab仓库部署 一、Gitlab的概述1、gitlab介绍2、gitlab主要功能3、gitlab和github的区别 二、部署环境1、安装依赖环境2、安装Postfix邮箱3、Gitlab优势4、Gitlab工作流程 三、Gitlab部署过程1、Yum安装Gitlab2、配置gitlab站点URL3、启动并访问Gitlab 四、Gitlab具体操作1、…

X86_64函数调用汇编程序分(2)

X86_64函数调用汇编程序分(2) 1 X86_64寄存器使用标准2 leaveq和retq指令2.1 leaveq2.2 retq 3 执行leaveq和retq之后栈的结构3.1 执行leaveq之后栈的结构3.1.1 test_fun_b函数执行leaveq之前的栈结构示意图3.1.2 test_fun_b函数执行leaveq之后的栈结构示…

招投标软件系统技术和服务解决方案

附件为全部文章,敬请下载。 ↑(完全免费,直接免费下载) 软件系统技术和服务解决方案 目录 第一部分 服务方案 6 第一节、 服务方案概述 6 第二节、 服务方式 6 第三节、 服务机构 7 第四节、 服务响应 8 第五节、 服务内容 9 第六…

HarmonyOS应用开发—资源分类与访问

应用开发过程中,经常需要用到颜色、字体、间距、图片等资源,在不同的设备或配置中,这些资源的值可能不同。 应用资源:借助资源文件能力,开发者在应用中自定义资源,自行管理这些资源在不同的设备或配置中的表…

Axure RP 10汉化版下载 Axure RP 10 mac授权码

Axure RP10汉化版是最强大的计划,原型设计和交付给开发人员的方法,而无需编写代码。能够制作逼真的,动态形式的原型。 Axure RP 10汉化版下载 Axure RP 10 mac授权码 RP 10有什么新功能? 1.显示动态面板 使用Axure RP 10&…

列表和字典练习

定义四个学生信息 在Python环境下,用列表定义: >>> stu1[xiaoming,True,21,79.9] >>> stu1[lihong,False,22,69.9] >>> stu1[zhangqiang,True,20,89.9] >>> stu1[EMT,True,23,99.9]如图,定义了四个列表…

React Native 环境配置(mac)

React Native 环境配置(mac) 1.Homebrew2.Node.js、WatchMan3.Yarn4.Android环境配置1.安装JDK2.下载AndroidStudio1.国内配置 Http Proxy2.安装SDK1.首先配置sdk的路径2.SDK 下载 3.创建模拟器4.配置 ANDROID_HOME 环境变量 5.IOS环境1.升级ruby&#x…

清理 Ubuntu 系统的 4 个简单步骤

清理 Ubuntu 系统的 4 个简单步骤 现在,试试看这 4 个简单的步骤,来清理你的 Ubuntu 系统吧。 这份精简指南将告诉你如何清理 Ubuntu 系统以及如何释放一些磁盘空间。 如果你的 Ubuntu 系统已经运行了至少一年,尽管系统是最新的,…

回归与聚类算法系列⑤:逻辑回归

目录 1、介绍 2、原理 输入 激活函数 3、损失及其优化 损失函数 优化 4、API 5、案例:乳腺癌肿瘤预测 数据集 代码 🍃作者介绍:双非本科大三网络工程专业在读,阿里云专家博主,专注于Java领域学习&#xff0…