[学习笔记]Node2Vec图神经网络论文精读

参考资料:https://www.bilibili.com/video/BV1BS4y1E7tf/?p=12&spm_id_from=pageDriver

Node2vec简述

DeepWalk的缺点

用完全随机游走,训练节点嵌入向量,仅能反应相邻节点的社群相似信息,无法反映节点的功能角色相似信息。

Node2vec

在这里插入图片描述
通过调节p和q的参数,可以调节权重。

p值很小,更愿意返回,则类似BFS,反映的是微观视角。
q值很小,更愿意返回,则类似DFS,反映宏观视角。
DFS捕捉的是homophily同质社群(社交网络)的特征
BFS捕捉的是Structural equivalence节点功能角色(中枢、桥接、边缘)的特征。

伪代码

在这里插入图片描述
在这里插入图片描述

一些技术细节

Alias Sampling:用空间换时间,时间复杂度O(1)的采样算法。

AliasSampling参考资料:https://keithschwarz.com/darts-dice-coins/

Node2vec论文精读

任何监督学习算法要求有内含丰富语义,有分类区分性以及相互独立的特征。
图嵌入的方法:
1.手动构造特征
2.基于矩阵分解的图嵌入
3.基于随机游走的图嵌入
4.基于神经网络

同一个社群的节点、同一个功能角色的节点,应该被编码成相近的embedding

使用二阶随机游走方法来产生节点的邻域。

一阶随机游走(一阶马尔科夫性):下一个节点仅与当前节点有关(deepwalk,pagerank)
二阶随机游走(二阶马尔科夫性):下一个节点不仅与当前节点有关,还与上一个节点有关

p,q的不同对应不同的探索策略,具有可解释性。
最优的p,q可以通过调惨得到。

贡献

1.提出node2vec,可以通过调节p、q来探索网络的不同特性,使用SGD来优化
2.node2vec符合网络科学的准则,提供了灵活的表示
3.node2vec将节点嵌入推广到了连接嵌入
4.在多类别分类任务和连接预测任务上进行了实验。

3.Node2vec算法

图: G = ( V , E ) G=(V,E) G=(V,E)
采样策略: S S S
节点 u u u的领域节点 N S ( u ) ⊂ V N_S(u) \subset V NS(u)V
任务:学习映射 f : V → R d f: V \rightarrow \mathbb{R}^d f:VRd:d是词嵌入后的维度
目标函数:
max ⁡ f ∑ u ∈ V log ⁡ Pr ⁡ ( N S ( u ) ∣ f ( u ) ) \max _f \sum_{u \in V} \log \operatorname{Pr}\left(N_S(u) \mid f(u)\right) fmaxuVlogPr(NS(u)f(u))
为了简化问题,做出两个假设:

  • 条件独立性假设:周围节点互相不影响:
    Pr ⁡ ( N S ( u ) ∣ f ( u ) ) = ∏ n i ∈ N S ( u ) Pr ⁡ ( n i ∣ f ( u ) ) \operatorname{Pr}\left(N_S(u) \mid f(u)\right)=\prod_{n_i \in N_S(u)} \operatorname{Pr}\left(n_i \mid f(u)\right) Pr(NS(u)f(u))=niNS(u)Pr(nif(u))
  • 特征空间的对称性:两个节点之间相互影响的程度是一样的,因此可以用特征的点乘来表示概率
    Pr ⁡ ( n i ∣ f ( u ) ) = exp ⁡ ( f ( n i ) ⋅ f ( u ) ) ∑ v ∈ V exp ⁡ ( f ( v ) ⋅ f ( u ) ) \operatorname{Pr}\left(n_i | f(u)\right)=\frac{\exp \left(f\left(n_i\right) \cdot f(u)\right)}{\sum_{v \in V} \exp (f(v) \cdot f(u))} Pr(nif(u))=vVexp(f(v)f(u))exp(f(ni)f(u))

Z u = ∑ v ∈ V exp ⁡ ( f ( u ) ⋅ f ( v ) ) Z_u=\sum_{v \in V} \exp (f(u) \cdot f(v)) Zu=vVexp(f(u)f(v)),称为配分函数,则目标函数可化为
Pr ⁡ ( n i ∣ f ( u ) ) = exp ⁡ ( f ( n i ) ⋅ f ( u ) ) ∑ v ∈ V exp ⁡ ( f ( v ) ⋅ f ( u ) ) \operatorname{Pr}\left(n_i \mid f(u)\right)=\frac{\exp \left(f\left(n_i\right) \cdot f(u)\right)}{\sum_{v \in V} \exp (f(v) \cdot f(u))} Pr(nif(u))=vVexp(f(v)f(u))exp(f(ni)f(u))

3.1 传统搜索策略

如何定义领域 N S ( u ) N_S(u) NS(u)依赖于策略 S S S。不同策略下,邻域是不一样的。
在这里插入图片描述
BFS:只探索近邻。
DFS:渐行渐远,探索离原节点较远的节点。

在homophily(同质性)假设下(对应BFS),同一个社区的节点,词嵌入后会比较相似。如s1和u
在structural equivalence假设下(对应DFS),有相同结构角色功能的节点,词嵌入后会比较相似。如u和s6
在真实图里,这两种不是互斥的,一个图可能既有homophily特质,也有structural equivalence特质。
BFS采样结果比较稳定,方差较小。
DFS采样结果比较不稳定,方差较大。

3.2 node2vec

3.2.1 随机游走

u u u:起始点
t t t:上一节点
v v v:当前节点
x x x:下一节点
N s ( t ) N_s(t) Ns(t):上一节点的邻居节点
k k k:当前节点v的邻居节点个数
l l l:随机游走序列节点个数

下一个节点的生成概率公式:
P ( c i = x ∣ c i − 1 = v ) = { π v x Z if  ( v , x ) ∈ E 0 otherwise  P\left(c_i=x \mid c_{i-1}=v\right)= \begin{cases}\frac{\pi_{v x}}{Z} & \text { if }(v, x) \in E \\ 0 & \text { otherwise }\end{cases} P(ci=xci1=v)={Zπvx0 if (v,x)E otherwise 
其中, π v x \pi_{v x} πvx是未归一化的转移概率。

3.2.2 搜索的偏向 α \alpha α

直接用权重作为游走概率,则无法调节搜索策略。直接用BFS或者DFS则太极端,无法平滑调节。
于是考虑带参数p和q的二阶随机游走:
α p q ( t , x ) = { 1 p if  d t x = 0 1 if  d t x = 1 1 q if  d t x = 2 \alpha_{p q}(t, x)= \begin{cases}\frac{1}{p} & \text { if } d_{t x}=0 \\ 1 & \text { if } d_{t x}=1 \\ \frac{1}{q} & \text { if } d_{t x}=2\end{cases} αpq(t,x)= p11q1 if dtx=0 if dtx=1 if dtx=2
π v x = α p q ( t , x ) ⋅ w v x \pi_{v x}=\alpha_{p q}(t, x) \cdot w_{v x} πvx=αpq(t,x)wvx

因为既要下一个节点x考虑当前节点v可达,也要考虑x与上一个节点t的距离,所以是二阶的随机游走
在这里插入图片描述
空间复杂度:随机游走需要存邻接表 O ( ∣ E ∣ ) O(|E|) O(E)。为了方便,二阶随机游走需要存 O ( a 2 ∣ V ∣ ) O(a^2|V|) O(a2V)来记录距离,其中 a a a是图中每个点的平均连接数。
时间复杂度: O ( l k ( l − k ) ) O\left(\frac{l}{k(l-k)}\right) O(k(lk)l),k是领域的节点个数
随着硬件的发展,空间复杂度没有时间复杂度重要

3.2.3 伪代码

在这里插入图片描述
总共分为三个阶段:

  1. 已知p,q和图权重,生成随机游走的采样策略,存入表中
  2. 每个节点生成r个随机游走序列,其中node2vecWalk函数用于生成起始点为u,长为l的随机游走序列。
    在这里插入图片描述
  3. 用生成的随机游走序列,通过skip-gram模型训练得到节点嵌入表示

AliasSampling是用空间(预处理)换时间的方法,它的时间复杂度是O(1),特别适用于大量反复抽样情况下,优势很突出。它将离散分布抽样转换为均匀分布抽样。
随机游走过程中,会有隐式的偏差。所以每个节点都采样r次,尽可能减少偏差。
每个阶段都可以并行,并且可以异步训练,可扩展性非常好

3.3 学习连接的特征

将node embedding扩展到link embedding
给定两个节点,定义一个二元操作符 ∘ \circ 来生成连接的表示:
在这里插入图片描述

4.实验

4.1:悲惨世界人物关系图的图嵌入

4.2 实验设置

与其他算法对比
严格控制各对比实验的条件

4.3 多标签分类

4.4 参数敏感度

在这里插入图片描述

随机剔除一些连接,性能会缓慢下降

4.5 扰动分析

缺失连接:保证连通域不变的情况下,进行剪枝,不会造成新的孤岛。
噪声增加连接:随机增加连接,在传感器网络中更常见。

4.6 可扩展性

构建E-R随机图,节点数从100到100万,来做node2vec算法,来看时间。可以看到时间复杂度近似为线性。

4.7 连接预测

构建正负样本的二分类问题。
采集测试集:从网络中取50%的边,同时确保不改变剩下的网络的连通性。再从网络中随机选取一些不相邻的节点对,作为负样本。然后可以训练二分类模型了。

5.讨论和结论

node2vec展示了一定的可解释性,p、q参数是灵活可调的,在复杂任务上的性能不错,特别是在扰动数据集上。
节点嵌入可以拓展到连接嵌入上。

代码实现

参考:https://www.bilibili.com/video/BV1VS4y1E7Me/?p=14&spm_id_from=pageDriver

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/107903.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【java】【SSM框架系列】【一】Spring

目录 一、简介 1.1 为什么学 1.2 学什么 1.3 怎么学 1.4 初识Spring 1.5 Spring发展史 1.6 Spring Framework系统架构图 1.7 Spring Framework学习线路 二、核心概念(IoC/DI,IoC容器,Bean) 2.1 概念 2.2 IoC入门案例 …

2.4.3 【MySQL】设置系统变量

2.4.3.1 通过启动选项设置 大部分的系统变量都可以通过启动服务器时传送启动选项的方式来进行设置。如何填写启动选项就是下面两种方式: 通过命令行添加启动选项。 在启动服务器程序时用这个命令: mysqld --default-storage-engineMyISAM --max-conn…

数据采集:数据挖掘的基础

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…

vue3+emelenui实现前端分页功能—最简单

在一些后台管理系统或者博客管理系统中分页功能是很常见的一种服务,因为总不可能把很多数据放在一块,那样阅读起来很麻烦,所以需要分页。也是前后端中最为常见的一个功能 先看一下分页场景的模拟。 首先我们要去后端写点数据通过接口给前端&a…

vue中v-model应用于表单元素

v-model应用于表单元素 常见的表单元素都可以用v-model绑定关联→快速获取或设置 表单元素的值它会根据控件类型自动选取正确的方法来更新元素 常见的表单元素&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8&…

MySQL的用户管理

1、MySQL的用户管理 &#xff08;1&#xff09;创建用户 create user zhang3 identified by 123123;表示创建名称为zhang3的用户&#xff0c;密码设为123123。 &#xff08;2&#xff09;了解user表 1&#xff09;查看用户 select host,user,authentication_string,select…

【C++杂货铺】优先级队列的使用指南与模拟实现

文章目录 一、priority_queue的介绍二、priority_queue的使用2.1 数组中的第k个最大元素 三、priority_queue模拟实现3.1 仿函数3.2 成员变量3.3 成员函数3.3.1 构造函数3.3.2 AdjustDown3.3.3 push3.3.4 AdjustUp3.3.5 pop3.3.6 empty3.3.7 size 四、结语 一、priority_queue的…

蓝桥杯官网练习题(搭积木)

类似题目&#xff1a; https://blog.csdn.net/s44Sc21/article/details/132758982?csdn_share_tail%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22132758982%22%2C%22source%22%3A%22s44Sc21%22%7Dhttps://blog.csdn.net/s44Sc21/article/deta…

【代码分析】初学解惑C++:函数适配器

文章目录 前置知识 运算符的重载“&#xff08;&#xff09;”一、函数适配器是什么&#xff1f;由遇到的问题引出适配器模式类模式对象模式例1例2例3例4二、实现函数适配器1.定义函数2.定义函数适配器3.使用函数适配器 三、带模板的函数适配器1、自定义unary_function2、改写带…

kafka-- 安装kafka manager及简单使用

一 、安装kafka manager 管控台&#xff1a; # 安装kafka manager 管控台&#xff1a; ## 上传 cd /usr/local/software ## 解压 unzip kafka-manager-2.0.0.2.zip -d /usr/local/ cd /usr/local/kafka-manager-2.0.0.2/conf vim /usr/local/kafka-manager-2.0.0.2/conf/appl…

智能驾驶感知技术的综述与展望

目录 1 智能驾驶环境感知的目的 1.1 智能驾驶感知技术的定义和作用 1.2 基于传感器的智能驾驶感知技术 1.3 基于深度学习的智能驾驶感知技术 2 环境感知的手段与方法 2.1 感知技术在智能驾驶中的应用与发展 2.2 智能驾驶决策系统的设计与优化 2.3 控制技术在智能驾驶中的应…

D. Matrix Cascade(结构体记录前面对后面的影响)

Problem - D - Codeforces 有一个大小为nn的矩阵&#xff0c;由0和1组成。行从上到下编号为1到n&#xff0c;列从左到右编号为1到n。交点(x,y)表示第x行和第y列的单元格。 AquaMoon想将矩阵的所有元素都变为0。在一步操作中&#xff0c;她可以执行以下操作&#xff1a; Plain …