时序分解 | MATLAB实现北方苍鹰优化算法NGO优化VMD信号分量可视化
目录
- 时序分解 | MATLAB实现北方苍鹰优化算法NGO优化VMD信号分量可视化
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
北方苍鹰优化算法NGO优化VMD,对其分解层数,惩罚因子数做优化,利用NGO北方苍鹰优化算法确定其最佳参数,熵值为适应度函数。
程序语言为matlab。
直接替换数据就可以用。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现北方苍鹰优化算法NGO优化VMD信号分量可视化。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行cosD = pdist(meas,'cosine');
clustTreeCos = linkage(cosD,'average');
cophenet(clustTreeCos,cosD)ans =0.9360
[h,nodes] = dendrogram(clustTreeCos,0);
h_gca = gca;
h_gca.TickDir = 'out';
h_gca.TickLength = [.002 0];
h_gca.XTickLabel = [];
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826figure
hidx = cluster(clustTreeCos,'criterion','distance','cutoff',.006);
for i = 1:5clust = find(hidx==i);plot3(meas(clust,1),meas(clust,2),meas(clust,3),ptsymb{i});hold on
end
hold off
xlabel('Sepal Length');
ylabel('Sepal Width');
zlabel('Petal Length');
view(-137,10);
grid on————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718