C# Onnx Yolov8 Fire Detect 火焰识别,火灾检测

效果

项目

 代码

using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using OpenCvSharp;
using static System.Net.Mime.MediaTypeNames;namespace Onnx_Yolov8_Fire_Detect
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;DetectionResult result_pro;Mat result_image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_ontainer;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;Result result;StringBuilder sb=new StringBuilder();private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = startupPath + "\\fire.onnx";classer_path = startupPath + "\\lable.txt";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;// 设置为CPU上运行options.AppendExecutionProvider_CPU(0);// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_ontainer = new List<NamedOnnxValue>();}private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}// 配置图片数据image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float[] result_array = new float[8400 * 1];float[] factors = new float[2];factors[0] = factors[1] = (float)(max_image_length / 640.0);// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));// 输入Tensorfor (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_ontainer);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();resize_image.Dispose();image_rgb.Dispose();result_pro = new DetectionResult(classer_path, factors);result = result_pro.process_result(result_array);result_image = result_pro.draw_result(result, image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());sb.Clear();sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");sb.AppendLine("------------------------------");for (int i = 0; i < result.length; i++){sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})", result.classes[i], result.scores[i].ToString("0.00"), result.rects[i].TopLeft.X, result.rects[i].TopLeft.Y, result.rects[i].BottomRight.X, result.rects[i].BottomRight.Y));}textBox1.Text = sb.ToString();}else{textBox1.Text = "无信息";}}}
}

Demo下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/109477.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java笔记:Java线程Dump分析

1 Thread Dump介绍 1.1 什么是Thread Dump Thread Dump是非常有用的诊断Java应用问题的工具。每一个Java虚拟机都有及时生成所有线程在某一点状态的thread-dump的能力&#xff0c;虽然各个 Java虚拟机打印的thread dump略有不同&#xff0c;但是 大多都提供了当前活动线程的快…

展会动态 | 迪捷软件邀您参加2023世界智能网联汽车大会

*9月18日之前注册的观众免收门票费* 由北京市人民政府、工业和信息化部、公安部、交通运输部和中国科学技术协会联合主办的2023世界智能网联汽车大会将于9月21日-24日在北京中国国际展览中心&#xff08;顺义馆&#xff09;举行。 论坛背景 本届展会以“聚智成势 协同向新——…

实战SpringMVC之CRUD

目录 一、前期准备 1.1 编写页面跳转控制类 二、实现CRUD 2.1 相关依赖 2.2 配置文件 2.3 逆向生成 2.4 后台代码完善 2.4.1 编写切面类 2.4.2 编写工具类 2.4.3 编写biz层 2.4.4 配置mapper.xml 2.4.5 编写相应接口类&#xff08;MusicMapper&#xff09; 2.4.6 处…

实现分布式架构与云原生的操作流程--干货分享

分布式架构和云原生都是当前技术领域中的热点话题&#xff0c;两者可以结合起来实现更高效的应用程序部署和运行。 实现分布式架构&#xff1a; 1、 服务拆分&#xff1a;将一个大型的应用程序拆分成多个小的服务&#xff0c;每个服务都可以独立部署和运行。 2、 分布式消息中…

竞赛 基于大数据的股票量化分析与股价预测系统

文章目录 0 前言1 课题背景2 实现效果3 设计原理QTChartsarma模型预测K-means聚类算法算法实现关键问题说明 4 部分核心代码5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于大数据的股票量化分析与股价预测系统 该项目较为新颖…

IP协议的相关特性

IP协议相关特性 报头结构 报文结构解释 4位版本号:指定IP协议的版本,对于IPV4来说,就是四位. 4位首部长度:IP头部的长度是多少个32bit,也就是Length4的字节数,4bit表示的最大的数是15,因此IP头部最大长度是60. 8位服务类型:3位优先权字段&#xff08;已经弃用&#xff09;&…

自造简易版音频进度条

最近在做音乐播放器页面, 积累了很多有趣的经验, 今天先分享播放进度条的开发过程. 效果 话不多说&#xff0c;先看效果 支持点击修改进度&#xff0c;拖拽修改进度&#xff0c;当然大家肯定都知道ui库里面有现成的&#xff0c;为何要自己造一个 首先著名的ui库中确实都要这…

【校招VIP】java线程池考点之核心线程数

考点介绍&#xff1a; 线程池是这一两年java大厂提问频度飙升的考点&#xff0c;需要从池子的概念理解相关参数和方法 java线程池考点之核心线程数-相关题目及解析内容可点击文章末尾链接查看&#xff01; 一、考点试题 1、请列举一下启动线程有哪几种方式&#xff0c;之后再…

springboot web 增加不存在的url返回200状态码 vue 打包设置vue.js 单文件使用

spring boot项目增加 html web页面访问 1. 首先 application.properties 文件中增加配置&#xff0c;指定静态资源目录&#xff08;包括html的存放&#xff09; spring.resources.static-locationsclasspath:/webapp/,classpath:/webapp/static/ 2. 项目目录 3. 如果有实现 …

老站长带你全面认识基站和天线

认识基站 作为数量最多的移动通信设备 基站几乎是随处可见 其实 基站也分为很多种 基站的天线&#xff0c;也分为很多种&#xff0c;真正都能区分清楚的人其实不多。 什么是基站 Base Station 一般特指“公用移动通信基站” 大家都知道&#xff0c;基站就是给手机提供信…

数据结构与算法(C语言版)P1---算法效率

算法的效率&#xff1a;算法的时间复杂度和空间复杂度 【本节目标】 1.算法效率2.时间复杂度3.空间复杂度4.常见时间复杂度以及复杂oj练习 1、算法效率 1.1、如何衡量一个算法是的好坏 如何衡量一个算法的好坏呢&#xff1f;比如斐波那契数列&#xff1a; long long Fib(…

常用的8位单片机+2.4g遥控芯片的“化学”反应

8位单片机通常是微控制器&#xff0c;它们具有相对简单的处理能力&#xff0c;但对于许多嵌入式系统和低复杂度应用而言&#xff0c;它们足够使用。这些芯片通常具有较低的功耗&#xff0c;价格相对实惠。 2.4GHz无线通信芯片&#xff0c;则具备强大的无线通信能力。它们可以实…