【深度学习】 Python 和 NumPy 系列教程(十):NumPy详解:2、数组操作(索引和切片、形状操作、转置操作、拼接操作)

目录

一、前言

二、实验环境

三、NumPy

0、多维数组对象(ndarray)

1. 多维数组的属性

1、创建数组

2、数组操作

1. 索引和切片

a. 索引

b. 切片

2. 形状操作

a. 获取数组形状

b. 改变数组形状

c. 展平数组

3. 转置操作

a. 使用.T属性

b. 使用transpose()函数

4. 拼接操作

np.concatenate()函数

np.vstack()函数

np.hstack()函数


一、前言

        Python是一种高级编程语言,由Guido van Rossum于1991年创建。它以简洁、易读的语法而闻名,并且具有强大的功能和广泛的应用领域。Python具有丰富的标准库和第三方库,可以用于开发各种类型的应用程序,包括Web开发、数据分析、人工智能、科学计算、自动化脚本等。

        Python本身是一种伟大的通用编程语言,在一些流行的库(numpy,scipy,matplotlib)的帮助下,成为了科学计算的强大环境。本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容:

  • Python:基本数据类型、容器(列表、元组、集合、字典)、函数、类
  • Numpy:数组、索引和切片、数组数学、广播
  • Matplotlib:绘图,子图,图像
  • IPython:创建笔记本,典型工作流程

二、实验环境

numpy1.21.6
python3.7.16
  • 运行下述命令检查Python版本
 python --version 
  • 运行下述代码检查Python、NumPy版本
import sys
import numpy as npprint("Python 版本:", sys.version)
print("NumPy 版本:", np.__version__)

三、NumPy

        NumPy(Numerical Python)是一个用于科学计算的Python库。它提供了一个强大的多维数组对象(ndarray),用于进行高效的数值运算和数据处理。Numpy的主要功能包括:

  1. 多维数组:Numpy的核心是ndarray对象,它是一个多维数组,可以存储同类型的元素。这使得Numpy非常适合处理向量、矩阵和其他多维数据结构。

  2. 数学函数:Numpy提供了许多常用的数学函数,如三角函数、指数函数、对数函数等。这些函数可以直接应用于整个数组,而无需编写循环。

  3. 广播(Broadcasting):Numpy支持不同形状的数组之间的运算,通过广播机制,可以对形状不同的数组进行逐元素的操作,而无需显式地编写循环。

  4. 线性代数运算:Numpy提供了丰富的线性代数运算函数,如矩阵乘法、求解线性方程组、特征值计算等。

  5. 随机数生成:Numpy包含了用于生成各种概率分布的随机数的函数,如均匀分布、正态分布、泊松分布等。

  6. 数据操作:Numpy提供了很多用于操作数组的函数,如切片、索引、排序、去重等。

        Numpy广泛应用于科学计算、数据分析、机器学习等领域。它的高效性和便捷性使得它成为Python数据科学生态系统中不可或缺的组成部分。

0、多维数组对象(ndarray)

        NumPy的ndarray对象是NumPy库中最重要的对象之一,也是进行科学计算的核心数据结构。ndarray代表了一个多维的数组,可以存储相同类型的元素。

1. 多维数组的属性

  • ndarray.shape:返回表示数组形状的元组,例如(2, 3)表示2行3列的数组。
  • ndarray.dtype:返回数组中元素的数据类型,例如intfloatbool等。
  • ndarray.ndim:返回数组的维度数,例如1表示一维数组,2表示二维数组。

1、创建数组

【深度学习】 Python 和 NumPy 系列教程(九):NumPy详解:1、创建数组的n种方式_QomolangmaH的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/m0_63834988/article/details/132782221?spm=1001.2014.3001.5502

2、数组操作

1. 索引和切片

  • a. 索引

    • 使用整数索引:可以使用整数索引访问数组中的特定元素。例如,arr[0]将返回数组arr中的第一个元素。
    • 使用布尔索引:可以使用布尔数组作为索引来选择满足特定条件的元素。例如,arr[arr > 5]将返回数组arr中大于5的元素。
    • 使用多维索引:对于多维数组,可以使用多个整数或布尔索引来访问特定的元素。例如,arr[0, 1]将返回多维数组arr中第一行第二列的元素。
import numpy as nparr = np.array([1, 2, 3, 4, 5])# 整数索引
print(arr[0])  # 输出:1# 布尔索引
print(arr[arr > 3])  # 输出:[4, 5]# 多维索引
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr[0, 1])  # 输出:2

  • b. 切片

    • 使用基本切片:可以使用基本切片表示法从数组中获取连续的子数组。例如,arr[1:5]将返回数组arr中索引为1到4的元素。
    • 使用步长切片:可以使用步长切片表示法从数组中获取间隔的子数组。例如,arr[1:5:2]将返回数组arr中索引为1、3的元素。
    • 使用省略号切片:对于多维数组,可以使用省略号(...)表示连续的切片。例如,arr[..., 1]将返回多维数组arr中的第二列。
    • 使用负数索引和切片:可以使用负数索引和切片来从数组的末尾开始访问元素。例如,arr[-1]将返回数组arr中的最后一个元素。
import numpy as nparr = np.array([1, 2, 3, 4, 5])# 基本切片
print(arr[1:4])  # 输出:[2, 3, 4]# 步长切片
print(arr[1:5:2])  # 输出:[2, 4]# 省略号切片
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr[..., 1])  # 输出:[2, 5]# 负数索引和切片
print(arr[-1])  # 输出:[4, 5, 6]

2. 形状操作

a. 获取数组形状

b. 改变数组形状

c. 展平数组

import numpy as nparr = np.array([[1, 2, 3], [4, 5, 6]])# 获取数组形状
print(arr.shape)  # 输出:(2, 3)# 改变数组形状
reshaped_arr = arr.reshape((3, 2))
print(reshaped_arr)
# 输出:
# [[1 2]
#  [3 4]
#  [5 6]]# 展平数组
flattened_arr = arr.flatten()
print(flattened_arr)  # 输出:[1 2 3 4 5 6]

3. 转置操作

        数组转置操作是指将数组的行和列互换的操作,转置操作对于处理二维数组特别有用,例如在矩阵运算和线性代数中经常需要对数组进行转置。

a. 使用.T属性

        在NumPy中,多维数组对象(ndarray)具有一个名为.T的属性,可以用于进行转置操作。该属性返回原始数组的转置结果,即行变为列,列变为行。

import numpy as nparr = np.array([[1, 2, 3], [4, 5, 6]])
transposed_arr = arr.T
print(transposed_arr)

输出:

[[1 4]
[2 5]
[3 6]]

b. 使用transpose()函数

        另一种实现数组转置的方法是使用np.transpose()函数。该函数接受一个多维数组作为参数,并返回其转置结果。

import numpy as nparr = np.array([[1, 2, 3], [4, 5, 6]])
transposed_arr = np.transpose(arr)
print(transposed_arr)

输出:

[[1 4]
[2 5]
[3 6]]

4. 拼接操作

        数组拼接操作是指将多个数组按照指定的方式进行连接的操作。

np.concatenate()函数

        np.concatenate()函数用于沿指定的轴连接数组。可以沿着现有的轴连接两个或多个数组,也可以指定axis参数来创建一个新的轴。np.concatenate()`函数将`arr1`和`arr2`沿着行方向(`axis=0`)进行了拼接:

import numpy as nparr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6]])# 沿行方向拼接数组
concatenated_arr = np.concatenate((arr1, arr2), axis=0)
print(concatenated_arr)

 输出:

[[1 4]
[2 5]
[3 6]]

np.vstack()函数

        np.vstack()函数用于垂直拼接(按行堆叠)两个或多个数组。它将输入的数组沿着垂直方向堆叠起来,生成一个新的数组。

import numpy as nparr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6]])# 垂直拼接数组
vstack_arr = np.vstack((arr1, arr2))
print(vstack_arr)

输出:

[[1 4]
[2 5]
[3 6]]

np.hstack()函数

        np.hstack()函数用于水平拼接(按列堆叠)两个或多个数组。它将输入的数组沿着水平方向堆叠起来,生成一个新的数组。

import numpy as nparr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6]])# 水平拼接数组
hstack_arr = np.hstack((arr1, arr2.T))

输出:

[[1 2 5]
[3 4 6]]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/110322.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VIRTIO-SCSI代码分析(1)VIRTIO SCSI设备模拟

VIRTIO SCSI设备的模拟是通过QEMU实现的,除了呈现SCSI设备外,它同样也是PCIE设备。QEMU中定义了VIRTIO SCSI设备如下所示: TYPE_DEVICE -> TYPE_VIRTIO_DEVICE -> TYPE_VIRTIO_SCSI_COMMON ->TYPE_VIRTIO_SCSI 其中前面为父设备&am…

【SpringCloud微服务项目学习-mall4cloud项目(1)】——环境部署,构建与运行

环境部署,构建与运行 mall4cloud项目介绍源码地址 开发环境搭建pom搭建项目运行前端运行 mall4cloud项目介绍 mall4j商城系统 首先介绍一下mall4j,是一个基于spring boot、spring oauth2.0、mybatis、redis的轻量级、前后端分离、防范xss攻击、拥有分布…

数据库开发-MySQL基础DQL和多表设计

1. 数据库操作-DQL DQL英文全称是Data Query Language(数据查询语言),用来查询数据库表中的记录。 1.1 介绍 查询关键字:SELECT 查询操作是所有SQL语句当中最为常见,也是最为重要的操作。在一个正常的业务系统中,查询操作的使…

怎么实现一个登录时需要输入验证码的功能

最近给项目换了一个登录页面,而这个登录页面设计了验证码,于是想着把这个验证码功能实现一下吧。 这篇文章就如何实现登录时的验证码验证功能进行详细地介绍。 目录 页面效果 实现思路 生成验证码的控制器类 前端页面代码 后端登录代码 UserLoginD…

JL-A/41 JL-A/42 JL-A/43 集成电路电流继电器 过负荷或短路 JOSEF约瑟

JL-A、B集成电路电流继电器 JL-A/11 JL-A/31 JL-A/12 JL-A/32 JL-A/13 JL-A/33 JL-A/21 JL-A/22 JL-A/23 JL-A/34 JL-A/35 JL-B/41 JL-A/42 JL-B/43 JL-B/11 JL-B/31 JL-B/12 JL-B/32 JL-B/13 JL-B/33 JL-B/21 JL-B/22 JL-B/23 JL-B/34 JL-B/35 JL-B/41 JL-B/42 …

[NLP] LLM---<训练中文LLama2(一)>训练一个中文LLama2的步骤

一 数据集 【Awesome-Chinese-LLM中文数据集】 【awesome-instruction-dataset】【awesome-instruction-datasets】【LLaMA-Efficient-Tuning-数据集】Wiki中文百科(25w词条)wikipedia-cn-20230720-filteredBaiduBaiKe(563w词条) …

linux内核分析:进程与调度

lec12, 13, 14 : 进程数据结构 实际上进程和线程都是有一个统一的内部结构------task_struct 这是因为,上面的进程和线程到了内核这里,统一变成了任务,这就带来两个问题:信息展示和命令下达(有的是进程,有的是线程下达) pid 是 process id,tgid 是 thread group ID …

Python模块之time中时间戳、时间字符与时间元组之间的相互转换

时间的三种形式 时间戳,根据1970年1月1日00:00:00开始按秒计算的偏移量。 1694868399 时间格式字符串,字符串形式的时间。 2023-09-16 20:46:39 时间元组(struct_time),包含9个元素。 time.struct_time(tm_year2023, …

026-从零搭建微服务-文件服务(二)

写在最前 如果这个项目让你有所收获,记得 Star 关注哦,这对我是非常不错的鼓励与支持。 源码地址(后端):https://gitee.com/csps/mingyue 源码地址(前端):https://gitee.com/csps…

【C++】使用红黑树进行封装map和set

🌇个人主页:平凡的小苏 📚学习格言:命运给你一个低的起点,是想看你精彩的翻盘,而不是让你自甘堕落,脚下的路虽然难走,但我还能走,比起向阳而生,我更想尝试逆风…

Python Opencv实践 - 视频文件操作

参考资料: 视频处理VideoCapture类---OpenCV-Python开发指南(38)_python opencv videocapture_李元静的博客-CSDN博客 OpenCV VideoCapture.get()参数详解 - 简书FOURCC四字符码对照表_4fvcc_Kellybook的博客-CSDN博客 import cv2 as cv im…

02目标检测-传统检测方法

目录 一、目标学习的检测方法变迁及对比 二、 基于传统手工特征的检测算法的定义 三、传统主要手工特征与算法 Haar特征与 人脸检测算法 - Viola-Jones(了解) HOG特征与 SVM 算法(了解)(行人检测、opencv实现) SIFT特征与SIFT算法(了解) DPM&#…