YOLOv5算法改进(17)— 更换损失函数(EIoU、AlphaIoU、SIoU和WIoU)

前言:Hello大家好,我是小哥谈。损失函数(loss function)是机器学习中用来衡量模型预测值与真实值之间差异的函数。它用于度量模型在训练过程中的性能,以便优化模型参数。在训练过程中,损失函数会根据模型的预测结果和真实标签计算出一个标量值,代表了模型预测的错误程度。通过最小化损失函数,可以使模型的预测结果与真实值之间的差距变小,从而提升模型的性能。本节课就简单介绍一下常见的IoU损失函数并重点讲解如何去更换损失函数!🌈 

前期回顾:

            YOLOv5算法改进(1)— 如何去改进YOLOv5算法

            YOLOv5算法改进(2)— 添加SE注意力机制

            YOLOv5算法改进(3)— 添加CBAM注意力机制

            YOLOv5算法改进(4)— 添加CA注意力机制

            YOLOv5算法改进(5)— 添加ECA注意力机制

            YOLOv5算法改进(6)— 添加SOCA注意力机制

            YOLOv5算法改进(7)— 添加SimAM注意力机制

            YOLOv5算法改进(8)— 替换主干网络之MobileNetV3

            YOLOv5算法改进(9)— 替换主干网络之ShuffleNetV2

            YOLOv5算法改进(10)— 替换主干网络之GhostNet

            YOLOv5算法改进(11)— 替换主干网络之EfficientNetv2

            YOLOv5算法改进(12)— 替换主干网络之Swin Transformer

            YOLOv5算法改进(13)— 替换主干网络之PP-LCNet

            YOLOv5算法改进(14)— 更换Neck之BiFPN

            YOLOv5算法改进(15)— 更换Neck之AFPN

            YOLOv5算法改进(16)— 增加小目标检测层

            目录

🚀1.不同IoU的介绍

🚀2.YOLOv5源码中的损失函数

🚀3.EIoU

💥💥3.1 简介

💥💥3.2 添加步骤

🚀4.AlphaIoU

💥💥4.1 简介

💥💥4.2 添加步骤

🚀5.SIoU

💥💥5.1 简介

💥💥5.2 添加步骤

🚀6.WIoU

💥💥6.1 简介

💥💥6.2 添加步骤

说明:♨️♨️♨️

关于损失函数(IoU、GIoU、DIoU、CIoU和EIoU) ,请参考本专栏文章:

YOLOv5基础知识入门(5)— 损失函数(IoU、GIoU、DIoU、CIoU和EIoU)

🚀1.不同IoU的介绍

本节课正式开始之前,先简单介绍一下不同IoU的区别👇

IOU Loss:主要考虑检测框目标框重叠面积。

GIOU Loss:IOU的基础上,解决边界框不相交时loss等于0的问题。

DIOU Loss:IOUGIOU的基础上,考虑边界框中心点距离的信息。

CIOU Loss:DIOU的基础上,考虑边界框宽高比的尺度信息。

EIOU Loss:CIOU的基础上,解决了纵横比的模糊定义,并添加Focal Loss解决BBox回归中的样本不平衡问题。

AlphaIoU Loss:基于IoU进行扩展,通过引入一个可调参数alpha来平衡正样本和负样本之间的权重。当alpha为0时,AlphaIoU Loss退化为普通的IoU Loss;当alpha为1时,AlphaIoU Loss主要关注正样本的损失。

SIoU Loss:结合了IoU(Intersection over Union)GIoU(Generalized IoU)两种损失函数的优点,可以更好地衡量目标框的预测准确度。具体来说,SIoU损失通过计算预测框和真实框之间的IoU,并将其转化为一个连续可导的数值。与IoU不同的是,SIoU考虑了目标框的位置偏移和大小偏移,使得模型更加关注目标框的准确匹配。

WIoU Loss:在IoU Loss基础上引入了类别权重,以更好地处理多类别目标检测问题。具体来说,对于每个类别,WIoU Loss计算各个预测框与真实框的IoU,然后根据类别权重对IoU进行加权求和得到最终的损失值。


🚀2.YOLOv5源码中的损失函数

在YOLOv5源码中,应用了上述某些损失函数,具体位置位于utils / metrics.py文件bbox_iou函数中。具体如下图所示:👇

接下来,我们重点看下该函数:

def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):

通过这行代码我们可以看出,当GIoUDIoUCIoU的布尔值都为False的时候,会返回最普通的IoU,如果其中有一项的布尔值为True,即返回设定为True的该IoU。

通常用utils / metrics.py文件下的__call__函数计算回归损失(bbox损失),由下图可知,YOLOv5中的bbox_iou默认使用的是CIOU Loss


🚀3.EIoU

💥💥3.1 简介

EIoU Loss是目标检测任务中用于评估边界框预测的一种损失函数。EIoU(Enhanced Intersection over Union)是IoU(Intersection over Union)的一种改进版本,它在计算交并比时考虑了更多的因素,以提高边界框预测的准确性。

IoU是通过计算检测框和真实框的交集面积与并集面积之比来评估检测的准确性。然而,IoU存在一些问题,例如在两个框之间有重叠但不完全重叠时,IoU可能会不准确地估计框的质量。为了解决这个问题,EIoU引入了一个偏移项和一个缩放项偏移项用于衡量预测框和真实框中心点之间的偏移,而缩放项用于衡量预测框和真实框尺寸之间的缩放关系通过考虑这些因素,EIoU可以更准确地评估边界框预测的质量

作用:

🍀(1)将纵横比的损失项拆分成预测的宽高分别与最小外接框宽高的差值,加速了收敛提高了回归精度。

🍀(2)引入了Focal Loss优化了边界框回归任务中的样本不平衡问题,即减少与目标框重叠较少的大量锚框对BBox回归的优化贡献,使回归过程专注于高质量锚框

公式:

其中 ,Cw 和 Ch 是覆盖预测框真实框的最小外接框的宽度和高度。

从 EIOU 损失函数公式可以看出,EIOU 损失函数包含三个部分预测框和真实框的重叠损失LIou,预测框和真实框的中心距离损失Ldis,预测框和真实框的宽和高损失LaspEIOU 损失的前两部分延续 CIOU 中的方法,但是宽高损失直接使预测框与真实框的宽度和高度之差最小,使得收敛速度更快

下图是 GIOU、CIOU 和 EIOU 损失预测框的迭代过程对比图,红色框和绿色框就是预测框的回归过程,蓝色框是真实框,黑色框是预先设定的锚框,可以看出 CIOU 的问题是宽和高不能同时增大或者减少,而 EIOU 可以。

论文题目:《Focal and Efficient IOU Loss for Accurate Bounding Box Regression》

论文地址:  Focal and Efficient IOU Loss for Accurate Bounding Box Regression

💥💥3.2 添加步骤

步骤1:配置metrics.py文件

utils / metrics.py文件中的bbox_iou函数全部替换成如下代码:

def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False,  EIoU=False, eps=1e-7):# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4box2 = box2.T# Get the coordinates of bounding boxesif x1y1x2y2:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]else:  # transform from xywh to xyxyb1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaw1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + epsunion = w1 * h1 + w2 * h2 - inter + epsiou = inter / unionif GIoU or DIoU or CIoU or EIoU:cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) widthch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex heightif CIoU or DIoU or EIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squaredrho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center distance squaredif DIoU:return iou - rho2 / c2  # DIoUelif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)with torch.no_grad():alpha = v / (v - iou + (1 + eps))return iou - (rho2 / c2 + v * alpha)  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = cw ** 2 + epsch2 = ch ** 2 + epsreturn iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)else:  # GIoU https://arxiv.org/pdf/1902.09630.pdfc_area = cw * ch + eps  # convex areareturn iou - (c_area - union) / c_area  # GIoUelse:return iou  # IoU

步骤2:配置loss.py文件

utils / loss.py文件中找到__call__函数,将Regression loss中计算IoU的代码(如下图所示)。

换成下面这句:

iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=False, EIoU=True)  

🚀4.AlphaIoU

💥💥4.1 简介

AlphaIoU是一种目标检测中常用的评估指标,用于衡量预测框和真实标注框之间的相似度IoU(Intersection over Union)衡量的是两个框之间的重叠程度,而AlphaIoU则引入了一个参数alpha,用于调整重叠部分和非重叠部分对最终相似度的贡献度

在实际应用中,通常需要根据具体情况进行尝试和调整。可以通过在验证集或测试集上进行实验,使用不同的alpha值进行评估和比较,选择效果最好的参数。

公式:

论文题目:《Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression》

论文地址:  https://arxiv.org/pdf/2110.13675.pdf

💥💥4.2 添加步骤

步骤1:配置metrics.py文件

utils / metrics.py文件中的bbox_iou函数全部替换成如下代码,由论文可知,alpha=3的时候效果最好,所以我们将alpha的值设置为3。

def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=3, eps=1e-7):# Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4box2 = box2.T# Get the coordinates of bounding boxesif x1y1x2y2:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]else:  # transform from xywh to xyxyb1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaw1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + epsunion = w1 * h1 + w2 * h2 - inter + eps# change iou into pow(iou+eps)# iou = inter / unioniou = torch.pow(inter/union + eps, alpha)# beta = 2 * alphaif GIoU or DIoU or CIoU:cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) widthch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex heightif CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonalrho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha  # center distanceif DIoU:return iou - rho2 / c2  # DIoUelif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)with torch.no_grad():alpha_ciou = v / ((1 + eps) - inter / union + v)# return iou - (rho2 / c2 + v * alpha_ciou)  # CIoUreturn iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelse:  # GIoU https://arxiv.org/pdf/1902.09630.pdf# c_area = cw * ch + eps  # convex area# return iou - (c_area - union) / c_area  # GIoUc_area = torch.max(cw * ch + eps, union) # convex areareturn iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoUelse:return iou # torch.log(iou+eps) or iou

步骤2:配置loss.py文件

utils / loss.py文件中找到__call__函数,将Regression loss中计算IoU的代码(如下图所示)。

换成下面这句: 

iou = bbox_alpha_iou(pbox.T, tbox[i], x1y1x2y2=False, alpha=3, CIoU=True)

🚀5.SIoU

💥💥5.1 简介

SIoU Loss 是指 Structural Similarity-based Intersection over Union Loss,它是一种用于计算目标检测任务中的损失函数SIoU Loss 综合考虑了目标框的位置、尺度和形状信息,能够更准确地评估预测框与真实框之间的相似度

在传统的目标检测任务中,常用的损失函数是交并比(Intersection over Union, IoU)损失。然而,IoU 损失只关注预测框和真实框的重叠度,未考虑到它们之间的结构相似性。因此,当目标框存在尺度、位置或形状变化时,IoU 损失可能会导致训练不稳定或者不准确

为了解决这个问题,SIoU Loss 引入了结构相似性度量(Structural Similarity,SSIM)的概念。SSIM 是一种图像质量评价指标,用于衡量两个图像之间的结构相似性。在目标检测中,SIoU Loss 利用 SSIM 来度量预测框和真实框之间的结构相似性,并将其作为一个权重因子与传统的 IoU 损失相乘,从而得到最终的损失函数

论文题目:《SIOU LOSS: MORE POWERFUL LEARNING FOR BOUNDING BOX REGRESSION》

论文地址:  https://arxiv.org/ftp/arxiv/papers/2205/2205.12740.pdf

💥💥5.2 添加步骤

步骤1:配置metrics.py文件

utils / metrics.py文件中的bbox_iou函数全部替换成如下代码。

def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, eps=1e-7):# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4box2 = box2.T# Get the coordinates of bounding boxesif x1y1x2y2:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]else:  # transform from xywh to xyxyb1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaw1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + epsunion = w1 * h1 + w2 * h2 - inter + epsiou = inter / unionif GIoU or DIoU or CIoU or SIoU:cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) widthch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex heightif SIoU:    # SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)# angle_cost = 1 - 2 * torch.pow( torch.sin(torch.arcsin(sin_alpha) - np.pi/4), 2)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - np.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)return iou - 0.5 * (distance_cost + shape_cost)if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squaredrho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center distance squaredif DIoU:return iou - rho2 / c2  # DIoUelif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)with torch.no_grad():alpha = v / (v - iou + (1 + eps))return iou - (rho2 / c2 + v * alpha)  # CIoUelse:  # GIoU https://arxiv.org/pdf/1902.09630.pdfc_area = cw * ch + eps  # convex areareturn iou - (c_area - union) / c_area  # GIoUelse:return iou  # IoU

步骤2:配置loss.py文件

utils / loss.py文件中找到__call__函数,将Regression loss中计算IoU的代码(如下图所示)。

换成下面这句:

iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, SIoU=True)

🚀6.WIoU

💥💥6.1 简介

WIoU Loss是一种用于计算目标检测任务中的损失函数WIoU代表Weighted Intersection over Union,是Intersection over Union的变体。IoU是目标检测中常用的评估指标之一,用于衡量预测框与真实目标框之间的重叠程度

WIoU Loss通过引入权重来平衡预测框的不同部分对损失的贡献在计算IoU时,对预测框和真实目标框的每个像素进行二值化处理,然后计算重叠区域的像素个数。WIoU Loss通过将不同部分的权重乘以对应的像素个数,得到了加权的IoU

使用WIoU Loss可以提高模型对目标边界的精确性,在训练过程中更加关注目标的边界预测。这对于一些需要准确目标边界的任务,如细粒度目标检测,尤为重要

公式:

论文题目:《Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism》

论文地址:  https://arxiv.org/pdf/2301.10051v1.pdf

💥💥6.2 添加步骤

步骤1:配置metrics.py文件

utils / metrics.py文件中的bbox_iou函数全部替换成如下代码。

class WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)# Get the coordinates of bounding boxesif xywh:  # transform from xywh to xyxy(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_else:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)# Intersection areainter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)# Union Areaunion = w1 * h1 + w2 * h2 - inter + epsif scale:self = WIoU_Scale(1 - (inter / union))# IoU# iou = inter / union # ori iouiou = torch.pow(inter/(union + eps), alpha) # alpha iouif CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter/(union + eps), gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIouelif WIoU:if Focal:raise RuntimeError("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2)) # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter/(union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter/(union + eps), gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfif Focal:return iou, torch.pow(inter/(union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

步骤2:配置loss.py文件

utils / loss.py文件中找到__call__函数,将Regression loss中的代码(如下图所示)。

换成下面这句:

        # WIoUiou = bbox_iou(pbox, tbox[i], WIoU=True, Focal=False, scale=True)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/112741.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

problen(5)ubuntu版本问题

浅浅记录一下这段时间的血和泪吧,大概耗时快一个月了吧,终于解决了...... 因为需要开启pwn之旅,需要在Ubuntu上安装一些东西,就是下面的一条命令: sudo pip3 install pwntools -i Simple Index(显示不太好了…

vue移动端页面适配

页面的适配,就是一个页面能在PC端正常访问,同时也可以在移动端正正常访问。 现在我们可以通过弹性布局【Flexible布局】、媒体查询和响应式布局。除此之外,还可以通过rem和vw针对性地解决页面适配问题。 响应式布局 响应式布局的核心&…

Android悬浮窗实现源码-悬浮球转盘悬浮加速小火箭效果悬浮播放视频图片

一、实现思路 悬浮窗是一种比较常见的需求,就是把需要展示的内容界面缩小成一个悬浮窗,然后用户可以在其他界面上处理事情。 基本实现原理: 主要是通过WindowManager这个类来实现 addView方法用于添加一个悬浮窗, updateViewLay…

一对多映射处理

8.3.1 、collection /** * 根据部门id查新部门以及部门中的员工信息 * param did * return */ Dept getDeptEmpByDid(Param("did") int did);<resultMap id"deptEmpMap" type"Dept"> <id property"did" column"did&quo…

React(react18)中组件通信03——简单使用 Context 深层传递参数

React&#xff08;react18&#xff09;中组件通信03——简单使用 Context 深层传递参数 1. 前言1.1 React中组件通信的其他方式1.2 引出 Context 2. 简单例子3. 语法说明3.1 createContext(defaultValue)3.2 value3.3 useContext(SomeContext) 4. 总结4.1 Context4.1.1 Context…

STM32 Cubemx 通用定时器 General-Purpose Timers同步

文章目录 前言简介cubemx配置 前言 持续学习stm32中… 简介 通用定时器是一个16位的计数器&#xff0c;支持向上up、向下down与中心对称up-down三种模式。可以用于测量信号脉宽&#xff08;输入捕捉&#xff09;&#xff0c;输出一定的波形&#xff08;比较输出与PWM输出&am…

【JAVA】多态的概念与实际利用

个人主页&#xff1a;【&#x1f60a;个人主页】 系列专栏&#xff1a;【❤️初识JAVA】 前言 在面向对象(OOP)的程序设计语言中&#xff0c;多态与封装、继承合称为OOP的三大特性。在今天&#xff0c;我们就来学习一下JAVA中的多态是什么样子的。、 多态 指一个对象在不同…

【LeetCode每日一题】——面试题10.11.峰与谷

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时间频度】九【代码实现】十【提交结果】 一【题目类别】 排序 二【题目难度】 中等 三【题目编号】 面试题10.11.峰与谷 四【题目描述】 在一个整数…

Java21 LTS版本

一、前言 除了众所周知的 JEP 之外&#xff0c;Java 21 还有更多内容。首先请确认 java 版本&#xff1a; $ java -version openjdk version "21" 2023-09-19 OpenJDK Runtime Environment (build 2135-2513) OpenJDK 64-Bit Server VM (build 2135-2513, mixed mo…

Visual Studio将C#项目编译成EXE可执行程序

经常看文章时会收获不少实用工具&#xff0c;有的在github上是编译好的&#xff0c;有的则是未编译的项目文件。所以经常会使用Visual Studio编译项目文件成exe可执行程序&#xff0c;以下为编译的流程。 第一步&#xff0c;从github上下载项目文件&#xff0c;举个例子&#…

减速带数据集950张

减速带是安装在公路上使经过的车辆减速的交通设施&#xff0c;形状一般为条状&#xff0c;也有点状的&#xff0c;材质主要是橡胶&#xff0c;也有的是金属的&#xff0c;一般以黄色黑色相间以引起视觉注意&#xff0c;使路面稍微拱起以达到车辆减速目的。 今天要介绍的数据集…

【云原生】k8s-----集群调度

目录 1.k8s的list-watch机制 1.1 list-watc机制简介 1.2 根据list-watch机制&#xff0c;pod的创建流程 2.scheduler的调度策略 2.1 scheduler的调度策略简介 2.2 Scheduler预选策略的算法 2.3 Scheduler优选策略的算法 3. k8s中的标签管理及nodeSelector和nodeName的 调…