数据结构——KD树

KD树(K-Dimensional Tree)是一种用于多维空间的二叉树数据结构,旨在提供高效的数据检索。KD树在空间搜索和最近邻搜索等问题中特别有用,允许在高维空间中有效地搜索数据点。
重要性质
1.分割K维数据空间的数据结构
2.是一颗二叉树
3.切分维度上,左子树值小于右子树值
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>// 定义二维点的结构体
struct Point2D {double x;double y;Point2D(double _x, double _y) : x(_x), y(_y) {}
};// 定义KD树节点
struct KDTreeNode {Point2D point;KDTreeNode* left;KDTreeNode* right;KDTreeNode(Point2D _point) : point(_point), left(nullptr), right(nullptr) {}
};class KDTree {
private:KDTreeNode* root;// 构建KD树的递归函数KDTreeNode* buildKDTree(std::vector<Point2D>& points, int depth) {if (points.empty()) {return nullptr;}// 选择轴线,交替选择x和y坐标int axis = depth % 2;// 按轴线排序点if (axis == 0) {std::sort(points.begin(), points.end(), [](const Point2D& a, const Point2D& b) {return a.x < b.x;});} else {std::sort(points.begin(), points.end(), [](const Point2D& a, const Point2D& b) {return a.y < b.y;});}// 选择中间点作为节点int median = points.size() / 2;KDTreeNode* node = new KDTreeNode(points[median]);// 递归构建左子树和右子树std::vector<Point2D> leftPoints(points.begin(), points.begin() + median);std::vector<Point2D> rightPoints(points.begin() + median + 1, points.end());node->left = buildKDTree(leftPoints, depth + 1);node->right = buildKDTree(rightPoints, depth + 1);return node;}// 在KD树中查找最近邻点的递归函数KDTreeNode* findNearestNeighbor(KDTreeNode* node, Point2D target, int depth, KDTreeNode* best, double& bestDistance) {if (node == nullptr) {return best;}// 计算当前节点到目标点的距离double currentDistance = distance(node->point, target);// 更新最近邻点和距离if (currentDistance < bestDistance) {best = node;bestDistance = currentDistance;}// 选择子树int axis = depth % 2;KDTreeNode* nearSubtree;KDTreeNode* farSubtree;if (axis == 0) {if (target.x < node->point.x) {nearSubtree = node->left;farSubtree = node->right;} else {nearSubtree = node->right;farSubtree = node->left;}} else {if (target.y < node->point.y) {nearSubtree = node->left;farSubtree = node->right;} else {nearSubtree = node->right;farSubtree = node->left;}}// 递归搜索更近的子树best = findNearestNeighbor(nearSubtree, target, depth + 1, best, bestDistance);// 如果可能,搜索更远的子树if (shouldSearchFarSubtree(node, target, bestDistance)) {best = findNearestNeighbor(farSubtree, target, depth + 1, best, bestDistance);}return best;}// 计算两点之间的欧几里得距离double distance(Point2D a, Point2D b) {double dx = a.x - b.x;double dy = a.y - b.y;return std::sqrt(dx * dx + dy * dy);}// 检查是否需要搜索更远的子树bool shouldSearchFarSubtree(KDTreeNode* node, Point2D target, double bestDistance) {int axis = node->point.x > target.x ? 0 : 1; // 如果轴线是x,则比较x坐标;如果轴线是y,则比较y坐标double nodeDistance = axis == 0 ? node->point.x - target.x : node->point.y - target.y;return nodeDistance * nodeDistance < bestDistance;}public:KDTree(std::vector<Point2D>& points) {root = buildKDTree(points, 0);}// 查找最近邻点Point2D findNearestNeighbor(Point2D target) {double bestDistance = std::numeric_limits<double>::max();KDTreeNode* bestNode = findNearestNeighbor(root, target, 0, nullptr, bestDistance);return bestNode->point;}
};int main() {// 创建一些二维点std::vector<Point2D> points = {{2.0, 3.0},{5.0, 4.0},{9.0, 6.0},{4.0, 7.0},{8.0, 1.0},{7.0, 2.0}};// 构建KD树KDTree kdTree(points);// 查找最近邻点Point2D target(9.0, 2.0);Point2D nearestNeighbor = kdTree.findNearestNeighbor(target);std::cout << "The nearest neighbor to (" << target.x << ", " << target.y << ") is (" << nearestNeighbor.x << ", " << nearestNeighbor.y << ")" << std::endl;return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/112773.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言——通讯录管理系统

通讯录管理系统项目简介 功能说明 控制台黑窗口实现程序需要满足以下几个功能 程序开始运行时首先显示选择菜单界面&#xff0c;根据用户输入确定实现何种功能 程序界面 代码实现 多文件实现 和之前写的实战项目类似&#xff0c;这里同样采用多文件实现的方式 多文件写代码…

解决Java应用程序中的SQLException:服务器时区值未识别问题;MySQL连接问题:服务器时区值 ‘Öйú±ê׼ʱ¼ä‘ 未被识别的解决方法

目录 ​编辑 问题背景 解决方案 问题背景 今天遇见一个这个问题&#xff0c;解决后发出来分享一下&#xff1a; java.sql.SQLException: The server time zone value is unrecognized or represents more than one time zone. You must configure either the server or J…

STP介绍

目录 STP概述 二层环路带来的问题 1.广播风暴 2.MAC地址漂移问题 3.多帧复制---这个好理解&#xff0c;同一个数据帧被重复收到多次&#xff0c;被称为多帧复制。 802.1D生成树 STP的BPDU BPDU主要分为两大类 配置BPDU RPC COST 配置BPDU的工作过程 TCN BPDU TCN…

【深度学习】 Python 和 NumPy 系列教程(十五):Matplotlib详解:2、3d绘图类型(1):线框图(Wireframe Plot)

目录 一、前言 二、实验环境 三、Matplotlib详解 1、2d绘图类型 2、3d绘图类型 0. 设置中文字体 1. 线框图&#xff08;Wireframe Plot&#xff09; 一、前言 Python是一种高级编程语言&#xff0c;由Guido van Rossum于1991年创建。它以简洁、易读的语法而闻名&#xff0…

Powdersigner + PostgreSql 同步表结构到pg数据库

要用Powdersigner同步表结构到PostgreSql数据库&#xff0c; Powdersigner 版本是 16.5&#xff0c;当前模型是mysql的 1&#xff0c;修改当前模型内容为postgresql的 Database --> Change Current DBMS 选择PostgreSQL 最大版本的&#xff08;因为Powdersigner内置版本一…

BUUCTF:[MRCTF2020]套娃

查看源码发现 PHP非法参数名传参问题&#xff0c;详细请参考我的这篇文章&#xff1a;谈一谈PHP中关于非法参数名传参问题 正则这里绕过使用%0a换行符绕过&#xff0c;payload: /?b.u.p.t23333%0a 得到下一步信息&#xff1a;secrettw.php 注释中的是JsFuck&#xff0c;用这…

一篇文章教你Pytest快速入门和基础讲解,一定要看!

前言 目前有两种纯测试的测试框架&#xff0c;pytest和unittestunittest应该是广为人知&#xff0c;而且也是老框架了&#xff0c;很多人都用来做自动化&#xff0c;无论是UI还是接口pytest是基于unittest开发的另一款更高级更好用的单元测试框架出去面试也好&#xff0c;跟别…

Nginx配置最佳实践

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

Nginx配置SSL证书

1 Ubuntu 20.04 上安装 Nginx Nginx 发音 “engine x” ,是一个开源软件&#xff0c;高性能 HTTP 和反向代理服务器&#xff0c;用来在互联网上处理一些大型网站。它可以被用作独立网站服务器&#xff0c;负载均衡&#xff0c;内容缓存和针对 HTTP 和非 HTTP 的反向代理服务器。…

部署云MYSQL(在线版)

在Methodot - 您的一站式云原生在线开发协作平台网站上可以部署免费的MYSQL&#xff0c;在应用商店里能看到可以搭建多种数据库&#xff1a;&#xff08;前提是要注册登录&#xff0c;免费版只能是2人共享&#xff09; 登陆好后&#xff0c;点击工作台&#xff0c;选择应用商店…

06目标检测-One-stage的目标检测算法

一、 One-stage目标检测算法 使用CNN卷积特征直接回归物体的类别概率和位置坐标值&#xff08;无region proposal&#xff09;准确度低&#xff0c;速度相对two-stage快 二、One-stage基本流程 输入图片------对图片进行深度特征的提取&#xff08;主干神经网络&#…

北京小程序开发-微信小程序开发时间总结

一、双线程模型 渲染线程和逻辑线程 小程序的双线程指的就是渲染线程和逻辑线程&#xff0c;这两个线程分别承担UI的渲染和执行 JavaScript 代码的工作 渲染线程使用 Webview 进行 UI 的渲染呈现。Webview 是一个完整的类浏览器运行环境&#xff0c;本身具备运行 JavaScript…