基于MUSIC算法的二维超声波成像matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1、基本原理

4.2、数学公式

4.3、实现过程

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

................................................................
load data.mat 
N_tarray = 3;           % 定义发射阵列元素数量 
N_rarray = 4;           % 定义接收阵列元素数量 
Pulses_t = 64;          % 定义脉冲数量 
fcarrier = 7.9e10;      % 定义载波频率  
fsample  = 1e7;         % 定义ADC采样频率 
Tc       = 2.56e-5;     % 定义线性调频或扫描的持续时间  
Bw       = 1e9;         % 定义线性调频或扫描的带宽  
S_rarray = 0.0019;      % 定义接收阵列元素间距
c        = 3e8;         % 定义光速
lambda   = c/fcarrier;  % 根据载波频率计算波长
Rd       = c / (2*Bw);  % 计算距离分辨率  
N        = Tc * fsample;% 计算每个线性调频或扫描的快速时间采样数量% 以下是数据处理部分,将原始数据转化为虚拟阵列矩阵
Data1   = func_arraycube(Data); 
% 获取第一个拍频信号  
Xvr     = squeeze(Data1(:, 32, :));  
% 计算采样点数量  
N_s1    = N_tarray * N_rarray * 128;
N_s2    = N * 2;
% 计算S1的采样点 
S1_samp = -pi / 2 : pi / N_s1 : pi / 2 - pi / N_s1;
% 计算S2的采样点 
S2_samp = (0 : N_s2 - 1) * Rd * N / N_s2;
% 计算S0的采样点
S0_samp = -1 : 2 / N_s1: 1 - 2 / N_s1;
% 计算空间间距
d_space = S_rarray / lambda;% 以下是波束形成器的使用部分,首先使用傅立叶波束形成器 
[~] = func_2Dfft(Xvr,S2_samp,S0_samp);% 然后使用MUSIC波束形成器 
[~] = func_music(Xvr,S1_samp,d_space);% 最后使用fftMUSIC波束形成器 
[~] = func_musicfft(Xvr,S2_samp,S1_samp,d_space);
68

4.算法理论概述

       MUSIC (Multiple Signal Classification) 算法是一种广泛应用于信号处理领域的算法,它可以用于估计信号的波达方向或频率。在超声波成像中,MUSIC 算法可以用于提高图像的分辨率和降低噪声。基于MUSIC算法的二维超声波成像是通过使用超声波探头发射和接收超声波信号,然后利用 MUSIC 算法对接收到的信号进行处理,以得到高分辨率的图像。

4.1、基本原理

       MUSIC 算法的基本思想是将信号数据分为两个部分:噪声和信号。通过建立信号子空间和噪声子空间,将信号投影到信号子空间,将噪声投影到噪声子空间。然后,利用信号和噪声在两个子空间中的投影系数不同,求出信号的方向或频率。

       在二维超声波成像中,MUSIC 算法可以将超声波信号视为信号,将噪声和其他干扰视为噪声。通过建立信号子空间和噪声子空间,将接收到的信号数据投影到两个子空间中,并计算出信号的方向或频率。然后,利用这些方向或频率信息,可以得到高分辨率的图像。

4.2、数学公式

设超声波信号为 s(t),则可以通过以下公式表示 MUSIC 算法的输出:

P(f) = 1/(N-1) * sum(S(f)/(S(f) + N(f)))

       其中,f 是频率,S(f) 是信号在频率 f 处的功率谱密度,N(f) 是噪声在频率 f 处的功率谱密度,P(f) 是 MUSIC 谱。

       在二维超声波成像中,可以将 P(f) 作为像素值,绘制出高分辨率的图像。如果 P(f) 的值较大,则说明在该频率处有信号存在,否则说明没有信号存在。因此,通过计算 P(f) 的值,可以得到高分辨率的图像。

4.3、实现过程

基于 MUSIC 算法的二维超声波成像的实现过程如下:

  1. 数据采集:使用超声波探头发射和接收超声波信号,并将接收到的信号存储在计算机中。
  2. 数据预处理:对接收到的数据进行预处理,例如去除直流分量、增益控制、滤波等。
  3. 数据分帧:将预处理后的数据按照时间顺序分为一帧一帧的数据。
  4. 建立信号子空间和噪声子空间:利用一帧数据可以建立信号子空间和噪声子空间。首先,对一帧数据进行特征值分解,得到特征值和特征向量。将特征值按照从大到小的顺序排列,前几个大的特征值对应的特征向量就是信号子空间的基向量,其他特征值对应的特征向量就是噪声子空间的基向量。
  5. 计算 MUSIC 谱:利用上一步得到的信号子空间和噪声子空间基向量,可以计算出 MUSIC 谱。具体方法是,将接收到的信号数据投影到信号子空间和噪声子空间中,并计算出信号的方向或频率。然后,利用 MUSIC 算法的公式计算出 MUSIC 谱。
  6. 成像:将 MUSIC 谱作为像素值,绘制出高分辨率的图像。可以将像素值进行可视化处理,例如映射为灰度值或彩色值。
  7. 数据后处理:对绘制出的图像进行后处理,例如滤波、增益控制、图像拼接等。

        需要注意的是,MUSIC 算法对噪声较为敏感,因此在进行数据处理之前需要先进行数据预处理和数据分帧。另外,在实现过程中需要使用大量的矩阵运算和数值计算,因此需要使用高性能的计算设备和优化算法来提高计算效率。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/116389.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp实现表格冻结

效果图如下: 思路: 1.由于APP项目需要,起初想去插件市场直接找现成的,结果找了很久没找到合适的(有的不支持vue2有的不能都支持APP和小程序) 2.后来,就只能去改uni-table源码了,因…

加速乐源码(golang版本)

一、分析 分析过程网上有很多,这里只说个大概,主要是提供golang源码 请求网站,发现前两次请求都会返回521,第三次请求成功,说明前两次请求肯定是干了什么事情;使用接口请求工具模拟请求分析该过程 使用postman工具请求 a. 第一次请求会在响应头返回jsluid,返回内容中拼接…

C++中的Template

模板的概念 建立通用的模具,大大提高复用性 模板不可直接使用 函数模板 函数模板语法 函数模板作用: 建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚拟的类型来代表。 语法: template&l…

Java JVM(1) - 走进JVM

走进JVM JVM相对于Java应用层的学习难度更大,开篇推荐掌握的预备知识: C/C(关键)、微机原理与接口技术、计算机组成原理、操作系统、数据结构与算法、编译原理(不推荐刚学完JavaSE的同学学习),如果没有掌握推荐的一半…

Android 富文本SpannableString

一、认识SpannableString 为什么要使用富文本 在Android开发中,有很多UI会画出一些特别炫酷的界面出来,比如一个字符串里有特殊的字会有其他颜色并加粗、变大变小、插入小图片、给某几个文字添加边框,如果我们使用笨办法用几个TextView或者Im…

Linux上的Pip和Python升级指南

在Linux系统上,保持Pip和Python版本的最新状态对于顺利进行Python开发至关重要。通过升级Pip和Python,你可以享受到最新的功能、修复的bug以及提升的开发效率。本文将为你提供在Linux上升级Pip和Python的详细指南,助你打造更强大的开发环境。…

【PowerQuery】Python自动刷新本地数据

Python数据刷新是开发爱好者和开发人员开发的PowerBI刷新模块进行数据刷新的手段,Python进行数据刷新是通过刷新PowerBI Desktop 的模式进行数据刷新。目前常用的Python的数据刷新模块是PbixRefresher,图为相关的模块和版本。 由于当前的脚本基于英文版本的PowerBI Desktop进…

Anaconda和Pycharm详细安装 配置教程

Anaconda:是一个开源的Python发行版本,其中包含了conda、Python等180多个科学包及其依赖项。【Anaconda下载】 PyCharm:PyCharm是一种Python IDE,带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具。【PyCharm下载】…

mac 配置 httpd nginx php-fpm 详细记录 已解决

在日常mac电脑 开发php项目一直是 httpd 方式 运行,由于有 多版本 运行的需求,docker不想用,索性用 php-fpm进行 功能处理。上次配置 是好的,但是感觉马马虎虎,这次 配置底朝天。因为配置服务器,几乎也都是…

【计算机网络】互联网公司的网络架构和业务场景

互联网公司的网络架构和业务场景 1. 互联网公司网络的组成1.1 网络的物理组成1.2 骨干网组成1.3 数据中心网络组成 2.互联网公司网络服务场景2.1 通用服务场景2.1.1 客户端到服务端请求真实网络过程2.1.2 客户端到服务端请求抽象网络过程2.1.3 负载均衡网络模型 2.2 边缘服务场…

数据湖在爱奇艺数据中台的应用

01 我们眼中的数据湖 作为爱奇艺的数据中台团队,我们的核心任务是管理和服务公司内的大量数据资产。在实施数据治理的过程中,我们不断吸收新的理念,引入尖端的工具,以精细化我们的数据体系管理。“数据湖”作为近年来数据领域广泛…

【李沐深度学习笔记】自动求导实现

课程地址和说明 自动求导实现p2 本系列文章是我学习李沐老师深度学习系列课程的学习笔记,可能会对李沐老师上课没讲到的进行补充。 自动求导 # 创建变量 import torch x torch.arange(4, dtypetorch.float32) #只有浮点数才能求导 # 计算y关于x的梯度之前&#x…