set和map的封装

介绍

set和map的底层都是红黑树,所以我们可以在自己实现的红黑树(简易版)的基础上,进行封装,成为简易的set和map

红黑树代码 

#pragma once#include <iostream>
#include <vector>
#include <string>
#include <queue>
#include <cassert>
#include <cstdlib>
#include <utility>// 有迭代器的红黑树
namespace my_RB_Tree
{enum colour{black,red};template <class T>struct RBTreeNode // 结点{RBTreeNode(const T& data): _left(nullptr),_right(nullptr),_parent(nullptr),_col(red),_data(data){}RBTreeNode* _left;RBTreeNode* _right;RBTreeNode* _parent;colour _col;T _data;};template <class T, class Ptr, class Ref> // T是元素类型,ptr是指针类型,ref是引用类型(后两种会有const类型)struct RBTreeIterator                    // 迭代器{typedef RBTreeNode<T> Node;typedef RBTreeIterator<T, Ptr, Ref> Self;//为了可以能让普通迭代器初始化const迭代器,需要来一个普通迭代器对象typedef RBTreeIterator<T, T*, T&> iterator;Node* _pNode;RBTreeIterator(Node* pNode): _pNode(pNode){}RBTreeIterator(const iterator& it) // const迭代器时,它是一个初始化;普通迭代器时,它是一个拷贝: _pNode(it._pNode){}// 让迭代器具有类似指针的行为Ref operator*(){return _pNode->_data;}Ptr operator->(){return &(_pNode->_data);}// 让迭代器可以移动:前置/后置++Self& operator++(){Increament();return *this;}Self operator++(int){Self tmp(*this);Increament();return tmp;}// 让迭代器可以移动:前置/后置--Self& operator--(){DeIncreament();return *this;}Self operator--(int){Self tmp(*this);DeIncreament();return tmp;}// 让迭代器可以比较bool operator!=(const Self& s) const{return _pNode != s._pNode;}bool operator==(const Self& s) const{return _pNode == s._pNode;}private:void Increament();void DeIncreament();};// 为了后序封装map和set,本代码的红黑树会有一个作为哨兵位的头结点template <class K, class T, class KeyOfT> // K是关键字的类型,T是元素类型(区分这两个的原因:会用该红黑树封装成set和map,而map是key_value的)// keyofT是返回关键字类型的值(否则map无法返回)class RBTree                              // 红黑树{public:typedef RBTreeNode<T> Node;typedef RBTreeIterator<T, T*, T&> iterator;typedef RBTreeIterator<T, const T*, const T&> const_iterator;public:RBTree(){_pHead = new Node(T());_pHead->_left = _pHead;_pHead->_parent = nullptr;_pHead->_right = _pHead;}// 在红黑树中插入值为data的节点,插入成功返回true,否则返回falsestd::pair<iterator, bool> Insert(const T& data);// 检测红黑树中是否存在值为data的节点,存在返回该节点的地址,否则返回nullptrNode* Find(const K& data);// 获取红黑树最左侧节点Node* LeftMost() const;// 获取红黑树最右侧节点Node* RightMost() const;iterator begin(){return iterator(LeftMost());}iterator end(){return iterator(_pHead);}const_iterator begin() const{return const_iterator(LeftMost());}const_iterator end() const{return const_iterator(_pHead);}// 检测红黑树是否为有效的红黑树,注意:其内部主要依靠_IsValidRBTRee函数检测bool IsValidRBTRee(){Node* root = _pHead->_parent;if (root->_col == red){return false;}int count = 0;find_blacknode(count, _pHead->_parent);return _IsValidRBTRee(_pHead->_parent, count, 0);}private:bool _IsValidRBTRee(Node* pRoot, size_t blackCount, size_t pathBlack);// 左单旋void RotateL(Node* pParent);// 右单旋void RotateR(Node* pParent);// 为了操作树简单起见:获取根节点Node*& GetRoot(){return _pHead->_parent;}void find_blacknode(int& count, Node* root){if (root == nullptr){return;}if (root->_col == black){++count;}find_blacknode(count, root->_left);find_blacknode(count, root->_right);}private:Node* _pHead = nullptr;};template <class K, class T, class KeyOfT>void RBTree<K, T, KeyOfT>::RotateL(Node* pParent){Node* cur = pParent->_right, * curleft = cur->_left;// 连接p和cur左树,因为该位置被p占据pParent->_right = curleft;if (curleft){curleft->_parent = pParent;}// 连接父结点if (pParent->_parent != _pHead){Node* ppnode = pParent->_parent;if (ppnode->_left == pParent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}else{_pHead->_parent = cur;cur->_parent = _pHead;}// 连接p和curpParent->_parent = cur;cur->_left = pParent;}template <class K, class T, class KeyOfT>void RBTree<K, T, KeyOfT>::RotateR(Node* pParent){Node* cur = pParent->_left, * curright = cur->_right;// 连接p和cur右树,因为该位置被p占据pParent->_left = curright;if (curright){curright->_parent = pParent;}// 连接父结点if (pParent->_parent != _pHead){Node* ppnode = pParent->_parent;if (ppnode->_left == pParent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}else{_pHead->_parent = cur;cur->_parent = _pHead;}// 连接p和curpParent->_parent = cur;cur->_right = pParent;}template <class K, class T, class KeyOfT>typename RBTree<K, T, KeyOfT>::Node* RBTree<K, T, KeyOfT>::LeftMost() const{Node* cur = _pHead->_parent;while (cur->_left){cur = cur->_left;}return cur;}template <class K, class T, class KeyOfT>typename RBTree<K, T, KeyOfT>::Node* RBTree<K, T, KeyOfT>::RightMost() const{Node* cur = _pHead->_parent;while (cur->_right){cur = cur->_right;}return cur;}template <class K, class T, class KeyOfT>typename RBTree<K, T, KeyOfT>::Node* RBTree<K, T, KeyOfT>::Find(const K& data) // 注意这里,{Node* cur = _pHead->_parent;KeyOfT kot;while (cur){if (data > kot(cur->_data)){cur = cur->_right;}else if (data < kot(cur->_data)){cur = cur->_left;}else{return cur;}}return nullptr;}template <class K, class T, class KeyOfT>std::pair<typename RBTree<K, T, KeyOfT>::iterator, bool> RBTree<K, T, KeyOfT>::Insert(const T& data) // 为了和map适配,要返回pair类型//(first是插入元素所在的迭代器,second是bool值,判断是否成功插入){KeyOfT kot;Node* newnode = nullptr;if (_pHead->_parent == nullptr){newnode = new Node(data);newnode->_col = black;_pHead->_parent = newnode;newnode->_parent = _pHead;return std::make_pair(iterator(newnode), true);}else{Node* cur = _pHead->_parent, * parent = cur;while (cur){if (kot(data) > kot(cur->_data)){parent = cur;cur = cur->_right;}else if (kot(data) < kot(cur->_data)){parent = cur;cur = cur->_left;}else{return std::make_pair((iterator)cur, false);}}newnode = new Node(data);cur = newnode;cur->_parent = parent;if (kot(parent->_data) > kot(cur->_data)){parent->_left = cur;}else{parent->_right = cur;}Node* grandfather = nullptr;while (parent != _pHead && parent->_col == red){grandfather = parent->_parent; // 因为父结点是红色,所以肯定有爷爷结点(注意红黑树规则:根结点必须是黑色)if (grandfather->_left == parent) // 确定父亲位置{Node* uncle = grandfather->_right; // 也就能确定叔叔位置if (uncle && uncle->_col == red){parent->_col = uncle->_col = black;grandfather->_col = red;}else // 如果uncle不存在/为黑,就需要旋转+变色了{// 需要先判断旋转类型(也就是判断 -- parent和cur的相对位置)if (parent->_left == cur){// 一条偏右的直线,需要右旋RotateR(grandfather);// 旋转完后parent成为根结点// 更改完结点指向后,就可以改颜色了(都是根结点为黑,另外两个为红)parent->_col = black;cur->_col = grandfather->_col = red; // 和cur一层}else{// 拐角在左边,也就是先左旋,再右旋RotateL(parent);RotateR(grandfather);// cur成为根结点// 改颜色cur->_col = black;parent->_col = grandfather->_col = red;}break;}}else // parent在grandfather的右树{Node* uncle = grandfather->_left;if (uncle && uncle->_col == red){parent->_col = uncle->_col = black;grandfather->_col = red;}else // 如果uncle不存在/为黑,就需要旋转+变色了{// 需要先判断旋转类型(也就是判断 -- parent和cur的相对位置)if (parent->_right == cur){// 一条偏左的直线,需要左旋RotateL(grandfather);parent->_col = black;cur->_col = grandfather->_col = red; // 和cur一层}else{// 拐角在右边,也就是先右旋,再左旋RotateR(parent);RotateL(grandfather);// 改颜色cur->_col = black;parent->_col = grandfather->_col = red;}break;}}cur = grandfather; // 注意,这里会改cur的指向,但返回值需要返回插入位置的迭代器,所以需要另外保存parent = cur->_parent;}(_pHead->_parent)->_col = black; // 根结点必须为黑(防止它在上面的循环中被修改)}_pHead->_left = LeftMost();_pHead->_right = RightMost();//std::cout << (_pHead->_left)->_data << " " << (_pHead->_right)->_data << std::endl;return std::make_pair(iterator(newnode), true);}template <class K, class T, class KeyOfT>bool RBTree<K, T, KeyOfT>::_IsValidRBTRee(Node* cur, size_t blackCount, size_t pathBlack){if (cur == nullptr){// 到空结点后,就说明一条路径已经走通了,可以用得到的黑色结点数与基准数对比,不一样就说明红黑树错误if (pathBlack != blackCount){return false;}else{return true;}}if (cur->_parent){Node* ppnode = cur->_parent;if (cur->_col == red && ppnode->_col == red){return false;}}if (cur->_col == black){++pathBlack;}return _IsValidRBTRee(cur->_left, blackCount, pathBlack) && _IsValidRBTRee(cur->_right, blackCount, pathBlack);}template <class T, class Ptr, class Ref>void RBTreeIterator<T, Ptr, Ref>::Increament(){Node* cur = _pNode, * parent = _pNode->_parent;if (cur->_right){// 找到右子树的最小结点Node* curright = cur->_right;while (curright->_left){curright = curright->_left;}_pNode = curright;}else{while (parent->_parent != cur && parent->_right == cur) // 找到cur是parent的左结点的位置,这样parent的位置就是下一个位置{cur = parent;parent = parent->_parent;}_pNode = parent;}}template <class T, class Ptr, class Ref>void RBTreeIterator<T, Ptr, Ref>::DeIncreament(){Node* cur = _pNode, * parent = _pNode->_parent;if (cur->_left){// 找到左子树的最大结点Node* curleft = cur->_left;while (curleft->_right){curleft = curleft->_right;}_pNode = curleft;}else{while (parent->_parent != cur && parent->_left == cur) // 找到cur是parent的左结点的位置,这样parent的位置就是下一个位置{cur = parent;parent = parent->_parent;}_pNode = parent;}}
}

set

set我们只实现它的插入和迭代器部分,大概可以看到效果就行

insert的迭代器转换问题

不考虑别的,因为insert返回的都是pair类型的,都是迭代器+布尔值,所以set直接调用红黑树的插入即可

但是,编译过不去!

大概就是说,普通迭代器无法转换为const迭代器

为什么会有这样的问题?

注意,set中,无论是普通迭代器还是const迭代器,其实都封装的是红黑树的const迭代器

stl源码中就是这么定义的:

  • 但是,tree的insert返回的是普通迭代器,而set的insert要返回的是const迭代器
  • 这就存在一个普通迭代器向const迭代器转换的过程

如何解决

所以我们需要在红黑树的迭代器类中增加这一功能

typedef RBTreeNode<T> Node;
typedef RBTreeIterator<T, Ptr, Ref> Self;
//为了可以能让普通迭代器初始化const迭代器,需要来一个普通迭代器对象
typedef RBTreeIterator<T, T*, T&> iterator;
Node* _pNode;RBTreeIterator(Node* pNode): _pNode(pNode)
{}
RBTreeIterator(const iterator& it) // const迭代器时,它是一个初始化;普通迭代器时,它是一个拷贝: _pNode(it._pNode)
{}

代码 

#include "RB_Tree.hpp"namespace my_set
{template <class K>class set{struct SetKeyOfT{const K& operator()(const K& key){return key;}};public:typedef typename my_RB_Tree::RBTree<K, K, SetKeyOfT>::const_iterator iterator;typedef typename my_RB_Tree::RBTree<K, K, SetKeyOfT>::const_iterator const_iterator;const_iterator begin() const{return _t.begin();}const_iterator end() const{return _t.end();}std::pair<iterator, bool> insert(const K& data) {//return _t.Insert(data);//这里在构建时,set的insert调用tree的insert//而tree中insert的返回值,返回的pair中,第一个成员是tree的普通迭代器//然后回到该函数,该函数返回的pair的第一个成员是set中的普通迭代器(实质上是tree中的const迭代器)//所以我们本质上是用不同类型的pair在赋值//所以要先转换std::pair<typename my_RB_Tree::RBTree<K, K, SetKeyOfT>::iterator, bool> ret = _t.Insert(data); //这里是tree的普通迭代器iterator it(ret.first);return std::pair<iterator, bool>(it,ret.second); //这里是要用普通迭代器初始化一个const迭代器,所以需要在tree迭代器中增加这个功能}private:my_RB_Tree::RBTree<K, K, SetKeyOfT> _t;};
}

map

注意点

map的重点就在insert和[ ]的重载上

也没啥别的了,就需要自己先构建一个pair类型,其他的就注意返回值和接收值到底是谁

K:key值类型    V:value类型     T:map的元素类型

代码

#include "RB_Tree.hpp"namespace my_map
{template <class K, class V>class map{public:typedef std::pair<const K, V> T; // map中key不能变,value可以变struct MapKeyOfT{const V &operator()(const T &data){return data.second;}};typedef typename my_RB_Tree::RBTree<K, T, MapKeyOfT>::iterator iterator;typedef typename my_RB_Tree::RBTree<K, T, MapKeyOfT>::const_iterator const_iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}const_iterator begin() const{return _t.begin();}const_iterator end() const{return _t.end();}std::pair<iterator, bool> insert(const T &data){return _t.Insert(data);}V &operator[](const K &data){auto ret = insert(std::make_pair(data,V()));return (ret.first)->second;}private:my_RB_Tree::RBTree<K, T, MapKeyOfT> _t;};
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/123712.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux CentOS7 vim多文件与多窗口操作

窗口是可视化的分割区域。Windows中窗口的概念与linux中基本相同。连接xshell就是在Windows中新建一个窗口。而vim打开一个文件默认创建一个窗口。同时&#xff0c;Vim打开一个文件也就会建立一个缓冲区&#xff0c;打开多个文件就会创建多个缓冲区。 本文讨论vim中打开多个文…

数字IC前端学习笔记:数字乘法器的优化设计(进位保留乘法器)

相关阅读 数字IC前端https://blog.csdn.net/weixin_45791458/category_12173698.html?spm1001.2014.3001.5482 阵列乘法器设计中限制乘法器速度的是随着数据位宽而迅速增大的串行进位链&#xff0c;如果使用进位保留加法器&#xff0c;则可以避免在设计中引入较长时间的等待&…

Docker命令起别名

1.打开.bashrc文件 vi ~/.bashrc 2. 起别名 alias dpsdocker ps --format "table{{.ID}}\t{{.Names}}\t{{.Image}}\t{{.Status}}" alias disdocker images 3. 文件生效 source ~/.bashrc 4.展示

vscode 注释插件koroFileHeader

https://blog.51cto.com/u_15785499/5664323 https://blog.csdn.net/weixin_67697081/article/details/129004675

【统计学】Top-down自上而下的角度模型召回率recall,精确率precision,特异性specificity,模型评价

最近在学 logistic regression model&#xff0c;又遇见了几个之前的老面孔。 召回率recall, 精确率precision&#xff0c;特异性spcificity&#xff0c;准确率accuracy&#xff0c;True positive rate&#xff0c;false positive rate等等名词在学习之初遇到的困难在于&#x…

密码技术 (6) - 证书

一. 前言 前面介绍的公钥密码和数字签名&#xff0c;都无法解决一个问题&#xff0c;那就是判断自己获取的公钥是否期望的&#xff0c;不能确定公钥是否被中间攻击人掉包。所以&#xff0c;证书的作用是用来证明公钥是否合法的。本文介绍的证书就是解决证书的可靠性的技术。 二…

云安全之HTTP协议介绍补充

HTTP是一个基于TCP/IP通信协议来传递数据的协议&#xff0c;传输的数据类型为HTML文件、图片文件、查询结果等。HTTP协议一般用于B/S架构。浏览器作为HTTP客户端通过URL向HTTP服务端即WEB服务器发送所有请求。 URI、URL、URN HTTP使用统一资源标识符(Uniform Resource ldentif…

【C语言】IO流(文件操作)- scanf / printf没那么简单!

本篇文章目录 1. 为什么使用文件&#xff1f;2. 什么是文件&#xff1f;3. IO流的概念4. 操作文件的步骤文件指针4.1 打开文件和关闭文件4.2 读写文件&#xff08;顺序读取&#xff09;4.2.1 字符输入输出4.2.2 字符串&#xff08;文本行&#xff09;输入输出4.2.3 格式化输入输…

小狐狸ChatGPT付费创作系统V2.0.4智能问答小程序,修复一个pc版的bug

狸GPT付费体验系统是一款基于ThinkPHP框架开发的AI问答小程序&#xff0c;是基于国外很火的ChatGPT进行开发的Ai智能问答小程序。 当前全民热议ChatGPT&#xff0c;流量超级大&#xff0c;引流不要太简单&#xff01;一键下单即可拥有自己的GPT&#xff01;无限多开、免费更新不…

php实战案例记录(13)关键词包含空格的并且搜索条件

要在 PHP 中搜索包含空格的关键词&#xff0c;并使用 MySQL 语句进行查询&#xff0c;你可以使用 MySQL 的 LIKE 运算符和 % 通配符来实现。 MySql拼接语句 $condition ; if (isset($word) && $word ! ) {$keyworksqland ;$wordlist str_replace("", &qu…

ORACLE Redo Log Buffer 重做日志缓冲区机制的设计

最近和朋友包括一些国产数据库的研发人员交流&#xff0c;很多程序员认为 Oracle 已经过时&#xff0c;开源数据库或者他们研发的国产数据库才代表数据库发展的未来。甚至在很多交流会议上拿出自家产品的某一个功能点和 Oracle 对比就觉得已经遥遥领先。 实际上数据库系统的发…

AMD GPU 内核驱动分析(三)-dma-fence 同步工作模型

在Linux Kernel 的AMDGPU驱动实现中&#xff0c;dma-fence扮演着重要角色&#xff0c;AMDGPU的Render/解码操作可能涉及到多个方面同时引用buffer的情况&#xff0c;以渲染/视频解码场景为例&#xff0c;应用将渲染/解码命令写入和GPU共享的BUFFER之后&#xff0c;需要将任务提…