Guava限流器原理浅析

文章目录

  • 基本知识
    • 限流器的类图
    • 使用示例
  • 原理解析
    • 限流整体流程
    • 问题驱动
      • 1、限流器创建的时候会初始化令牌吗?
      • 2、令牌是如何放到桶里的?
      • 3、如果要获取的令牌数大于桶里的令牌数会怎么样
      • 4、令牌数量的更新会有并发问题吗
  • 总结

实际工作中难免有限流的场景。我们熟知的限流算法有计数器限流(固定窗口、滑动窗口)算法、漏桶算法、令牌桶算法等。其具体实现也多种多样,本文就来简单窥探一下Guava的实现。

基本知识

限流器的类图

在这里插入图片描述
RateLimiter:限流器基类,定义限流器的创建、令牌的获取等操作。
SmoothRateLimiter:定义一种平滑的限流器,也是抽象类,继承RateLimiter。
SmoothBursty:普通的平滑限流器实现类,实现SmoothRateLimiter。以稳定的速率生成令牌,则会同时全部被获取到。比如令牌桶现有令牌数为5,这时连续进行10个请求,则前5个请求会全部直接通过,没有等待时间,之后5个请求则每隔200毫秒通过一次。
SmoothWarmingUp:预热的平滑限流器实现类,实现SmoothRateLimiter。随着请求量的增加,令牌生成速率会缓慢提升直到一个稳定的速率。比如令牌桶现有令牌数为5,这时连续进行10个请求,只会让第一个请求直接通过,之后的请求都会有等待时间,等待时间不断缩短,直到稳定在每隔200毫秒通过一次。这样,就会有一个预热的过程。

下文以SmoothBursty为例来分析限流原理。

使用示例

public class RateLimitTest {public static void main(String[] args) throws InterruptedException {// 1、创建限流器,一秒内最多允许2个请求通过RateLimiter rateLimiter = RateLimiter.create(2);serial(rateLimiter);}private static void serial(RateLimiter rateLimiter) throws InterruptedException {for (int i = 0; i < 10; i++) {String time = LocalDateTime.now().format(DateTimeFormatter.ISO_LOCAL_TIME);// 2、尝试获取令牌,不论是否能获取到都直接返回boolean res = rateLimiter.tryAcquire();// 获取令牌,如果获取不到就一直等待// rateLimiter.acquire();if (res) {System.out.println(time + ":请求被允许");} else {System.out.println(time + ":请求被限流");}Thread.sleep(250);}}}

执行结果:

15:52:08.583:请求被允许
15:52:08.852:请求被限流
15:52:09.108:请求被允许
15:52:09.361:请求被限流
15:52:09.617:请求被允许
15:52:09.872:请求被限流
15:52:10.127:请求被允许
15:52:10.378:请求被限流
15:52:10.629:请求被允许
15:52:10.882:请求被限流

可以看到同一秒内最多只有2个请求被允许。

原理解析

限流整体流程

在这里插入图片描述

  1. 创建限流器。此时桶里的令牌数为0。设置QPS=5(每秒最多允许5个请求),这个数字“5”带表了两层含义:
    1)桶里最大只能容纳5个令牌。
    2)一秒可以生成5个令牌,生成一个令牌需要1/5=0.2秒=200毫秒。
  2. 发起请求。此时距离限流器创建已经经过了一秒,桶里应该存在5个令牌,而本次请求需要获取并消耗1个令牌。
  3. 更新令牌数量。

上面只是描述了一个大致思路,还有很多细节问题需要考虑,下文就以问题来驱动原理探究。

问题驱动

限流器关键属性解释
SmoothRateLimiter.java

/*** 当前桶中已存在的令牌数,如果请求需要的令牌数小于已存在的令牌数,就允许通过*/
double storedPermits;/*** 令牌桶可以保存的最大令牌数*/
double maxPermits;/*** 多长时间可以生成一个令牌,单位是微秒。比如RateLimiter.create(5),就意味着1秒生成5个令牌,那么生成一个令牌就需要200ms*/
double stableIntervalMicros;/*** 重要!!!下一个请求可以被允许获取令牌的时间点,单位是微秒。*/
private long nextFreeTicketMicros = 0L;

1、限流器创建的时候会初始化令牌吗?

我们从限流器的创建源码着手分析。
RateLimiter.java

public static RateLimiter create(double permitsPerSecond) {return create(permitsPerSecond, SleepingStopwatch.createFromSystemTimer());}static RateLimiter create(double permitsPerSecond, SleepingStopwatch stopwatch) {// 创建一个普通平滑限流器RateLimiter rateLimiter = new SmoothBursty(stopwatch, 1.0 /* maxBurstSeconds */);// 关键:设置限流器速率相关信息rateLimiter.setRate(permitsPerSecond);return rateLimiter;}public final void setRate(double permitsPerSecond) {checkArgument(permitsPerSecond > 0.0 && !Double.isNaN(permitsPerSecond), "rate must be positive");synchronized (mutex()) {// 关键doSetRate(permitsPerSecond, stopwatch.readMicros());}}// 由子类即SmoothRateLimiter来实现abstract void doSetRate(double permitsPerSecond, long nowMicros);

SmoothRateLimiter.java

@Overridefinal void doSetRate(double permitsPerSecond, long nowMicros) {// 重点1:生成令牌,并同步下次可以获取令牌的时间resync(nowMicros);double stableIntervalMicros = SECONDS.toMicros(1L) / permitsPerSecond;// 将stableIntervalMicros从默认的0.0设置为 生成一个令牌所需的时间this.stableIntervalMicros = stableIntervalMicros;// 重点2doSetRate(permitsPerSecond, stableIntervalMicros);}// 重点1/** 限流器创建(doSetRate(double permitsPerSecond, long nowMicros))* 以及 获取令牌(reserveEarliestAvailable(int requiredPermits, long nowMicros))的时候都会调用这个方法* 如果是创建时调用 由于coolDownIntervalMicros返回值即stableIntervalMicros=0,所以当前storedPermits的计算结果仍为0**/void resync(long nowMicros) {if (nowMicros > nextFreeTicketMicros) {// 下一次可以获取令牌的时间到现在这段时间内,需要生成多少令牌,由于当前coolDownIntervalMicros()会返回0.0,所以计算结果为Infinity(无穷)double newPermits = (nowMicros - nextFreeTicketMicros) / coolDownIntervalMicros();// 保证桶里的令牌数不能超过最大允许的令牌数,因为newPermits=无穷,所以这里计算出桶里的令牌数应该是0storedPermits = min(maxPermits, storedPermits + newPermits);// 将nextFreeTicketMicros值设为限流器创建的时间nextFreeTicketMicros = nowMicros;}}// 由子类即SmoothBursty来实现abstract void doSetRate(double permitsPerSecond, double stableIntervalMicros);static final class SmoothBursty extends SmoothRateLimiter {// 重点2@Overridevoid doSetRate(double permitsPerSecond, double stableIntervalMicros) {// 当前允许的最大令牌数,限流器创建时该值为0.0double oldMaxPermits = this.maxPermits;// 计算最新的允许的最大令牌数maxPermits = maxBurstSeconds * permitsPerSecond;if (oldMaxPermits == Double.POSITIVE_INFINITY) {// if we don't special-case this, we would get storedPermits == NaN, belowstoredPermits = maxPermits;} else {// 如果最大允许的令牌数时0,则将桶里的令牌数也置为0storedPermits =(oldMaxPermits == 0.0)? 0.0 // initial state: storedPermits * maxPermits / oldMaxPermits;}}@Overridedouble coolDownIntervalMicros() {// 返回的就是生成一个令牌需要多长时间,该值在限流器创建的时候初始值为0.0return stableIntervalMicros;}}

通过上面源码中 重点1和重点2的分析可以发现,在创建限流器的时候,当前桶中的令牌数一直是0。

结论:限流器创建的时候不会初始化令牌

2、令牌是如何放到桶里的?

我们经常看到对于令牌桶限流算法的描述是:将令牌每隔一段时间定时放入桶中。
乍一看也许需要一个定时器才能达到这个效果。但Guava的实现告诉我们其实不用这么复杂,只需要一个计数器(storedPermits)变量就能搞定。

想要知道令牌如何放到桶里,就需要从获取令牌的时候开始探索。

这有点奇怪对吗,正常是先把令牌放到桶里,然后才获取令牌,即有因才有果;但是我们却需要先知道如何获取令牌,才能知道令牌是如何放到桶里的。
在我看来,这正是Guava实现的巧妙之处。

RateLimiter.java

/**
* 尝试获取令牌
* @param permits 要获取的令牌数
* @param timeout 能获取到令牌的最大等待时间,等待时间超过这个时间就直接返回false。如果该值是0,不做任何等待,直接返回是否获取到令牌
*/
public boolean tryAcquire(int permits, long timeout, TimeUnit unit) {long timeoutMicros = max(unit.toMicros(timeout), 0);checkPermits(permits);long microsToWait;synchronized (mutex()) {long nowMicros = stopwatch.readMicros();// 判断在超时时间内能否获取到令牌if (!canAcquire(nowMicros, timeoutMicros)) {// 获取不了就返回falsereturn false;} else {// 关键:如果在超时时间内能获取到令牌,计算需要等待的时间microsToWait = reserveAndGetWaitLength(permits, nowMicros);}}// 睡眠等待足够的时间stopwatch.sleepMicrosUninterruptibly(microsToWait);return true;}private boolean canAcquire(long nowMicros, long timeoutMicros) {// 获取最早可以获得令牌的时间return queryEarliestAvailable(nowMicros) - timeoutMicros <= nowMicros;}final long reserveAndGetWaitLength(int permits, long nowMicros) {// 关键:获取令牌并返回最早能获得令牌的时间long momentAvailable = reserveEarliestAvailable(permits, nowMicros);return max(momentAvailable - nowMicros, 0);}// 由子类即SmoothBursty实现abstract long queryEarliestAvailable(long nowMicros);// 由子类即SmoothBursty实现abstract long reserveEarliestAvailable(int permits, long nowMicros);

SmoothBursty.java

final long queryEarliestAvailable(long nowMicros) {// 又是它!!!待会分析它到底是个什么东西return nextFreeTicketMicros;}/*** 获取令牌的核心方法** @param requiredPermits 需要获取的令牌数* @param nowMicros* @return*/@Overridefinal long reserveEarliestAvailable(int requiredPermits, long nowMicros) {// 关键:生成令牌,并将下一次可以获取令牌的时间设置为当前时间resync(nowMicros);// 这里拿到的是最早可以获取到令牌的时间long returnValue = nextFreeTicketMicros;// 实际能获取的令牌数,有可能需要的令牌数大于当前桶里的令牌数,两者取最小double storedPermitsToSpend = min(requiredPermits, this.storedPermits);// 实际拿到的令牌数相比需要的令牌数还差多少double freshPermits = requiredPermits - storedPermitsToSpend;// 要拿到还差的令牌数,还需要等多久long waitMicros =storedPermitsToWaitTime(this.storedPermits, storedPermitsToSpend)+ (long) (freshPermits * stableIntervalMicros);// 重点3:更新下一次可以获取令牌的时间 = 当前时间 + 要拿到还差的令牌数要等的时间this.nextFreeTicketMicros = LongMath.saturatedAdd(nextFreeTicketMicros, waitMicros);// 重点4:更新桶里还剩的令牌数this.storedPermits -= storedPermitsToSpend;return returnValue;}void resync(long nowMicros) {if (nowMicros > nextFreeTicketMicros) {// 下一次可以获取令牌的时间到现在这段时间内,需要生成多少令牌double newPermits = (nowMicros - nextFreeTicketMicros) / coolDownIntervalMicros();// 重点1:生成令牌并放入桶中storedPermits = min(maxPermits, storedPermits + newPermits);// 重点2:将nextFreeTicketMicros值设为当前时间nextFreeTicketMicros = nowMicros;}}

通过上面源码中的重点1、重点2、重点3、重点4可以发现:

  • 重点1是向桶里放令牌,既增加令牌计数器storedPermits
  • 重点4是从桶里获取令牌,既减少令牌计数器storedPermits
  • 重点2和重点3都是更新nextFreeTicketMicros

所以令牌的生成、获取都围绕着两个变量:storedPermits(当前桶里的令牌数)和nextFreeTicketMicros(下次可以获得令牌的时间)。

而这两个变量也正是Guava限流设计的巧妙之处:不必提前向桶里放入令牌,或通过一个单独的定时器向桶里放令牌,而是在获取令牌的时候增加令牌数量再减少令牌数量。

用图来更加直观的体现这里的逻辑。

nextFreeTicketMicros在源码中其实是用微秒级时间戳表示,为了方便理解,下面就用正常时间来表示。

在这里插入图片描述

  1. 创建限流器。RateLimiter rateLimiter = RateLimiter.create(5);即QPS=5,每秒生成5个令牌,生成1个令牌需要200毫秒,桶内最大令牌数=5。storedPermits(此时桶里的令牌数)=0,nextFreeTicketMicros(下次可以获取令牌的时间)=0。
  2. 请求A要获取1个令牌。rateLimiter.acquire();当前时间是2023-9-26 10:00:00。
  3. 发现当前时间 > nextFreeTicketMicros,两者相差的这段时间远远大于1秒,而1秒可以生成5个令牌(最多也只能存5个)。同时要把nextFreeTicketMicros设置为当前时间,意味着现在桶里已经有令牌了,现在马上就可以获取到令牌。此时storedPermits=5,nextFreeTicketMicros=2023-9-26 10:00:00。
  4. 获取到1个令牌,此时storedPermits=4,nextFreeTicketMicros=2023-9-26 10:00:00。
  5. 请求B要获取10个令牌。rateLimiter.acquire(10);当前时间是2023-9-26 10:00:01.001。
  6. 发现当前时间 > nextFreeTicketMicros,两者相差的这段时间大于1秒,1秒可以生成5个令牌,当前桶里还有4个,5+4=9,但桶最多只能存5个。同时要把nextFreeTicketMicros设置为当前时间,意味着现在桶里已经有令牌了,现在马上就可以获取到令牌。此时storedPermits=5,nextFreeTicketMicros=2023-9-26 10:00:01.001。
  7. 需要获取10个令牌,但是现在桶里只有5个,即使全部获取还欠5个,那就提前透支5个咯。意味着接下来这1秒生成的5个令牌是预留给当前请求的,其它请求1秒后才能再获取令牌。此时storedPermits=0,nextFreeTicketMicros=2023-9-26 10:00:02.001。
  8. 请求C要获取1个令牌。rateLimiter.acquire();当前时间是2023-9-26 10:00:01.999。
  9. 由于nextFreeTicketMicros=2023-9-26 10:00:02.001。还没到下次可以获取令牌的时间,就只能等待。
  10. 等待ing …
  11. 当前时间是2023-9-26 10:00:02.200。当前时间 > nextFreeTicketMicros,相差的这段时间是200毫秒,刚好能生成1个令牌。同时要把nextFreeTicketMicros设置为当前时间,意味着现在桶里已经有令牌了,现在马上就可以获取到令牌。此时storedPermits=1,nextFreeTicketMicros=2023-9-26 10:00:02.200。
  12. 获取到1个令牌,此时storedPermits=0,nextFreeTicketMicros=2023-9-26 10:02:200。

结论:令牌的生成其实是在令牌的获取逻辑中。

3、如果要获取的令牌数大于桶里的令牌数会怎么样

经过上面的分析可以得出结论:会透支/预支不足的令牌数。

4、令牌数量的更新会有并发问题吗

可以看一下获取令牌时的源码:

public double acquire(int permits) {long microsToWait = reserve(permits);stopwatch.sleepMicrosUninterruptibly(microsToWait);return 1.0 * microsToWait / SECONDS.toMicros(1L);}final long reserve(int permits) {checkPermits(permits);// 这里已经加了同步处理synchronized (mutex()) {return reserveAndGetWaitLength(permits, stopwatch.readMicros());}}

结论:同一个限流器不会有并发问题。

总结

本文并不过多深度剖析源码和原理。旨在以初学者的角度窥探Guava限流器的限流实现思路,并解答一些理解中存在的疑惑。

尤其是令牌生成和获取的设计思路也能对自己的日常工作有启发作用~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/123850.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LabVIEW开发虚拟与现实融合的数字电子技术渐进式实验系统

LabVIEW开发虚拟与现实融合的数字电子技术渐进式实验系统 数字电子技术是所有电气专业的重要学科基础&#xff0c;具有很强的理论性和实践性。其实验是提高学生分析、设计和调试数字电路能力&#xff0c;培养学生解决实际问题的工程实践能力&#xff0c;激发学生创新意识&…

C#(CSharp)入门实践项目(简易回合制游戏)

项目名称 木木夕营救公主 项目介绍 这是一个小游戏&#xff0c;你将扮演一个英雄&#xff08;木木夕&#xff09;&#xff0c;去打败恶龙&#xff0c;拯救出公主&#xff0c;该项目采用回合制战斗模式&#xff0c;由于角色的血量和攻击为随机数&#xff0c;所以需要靠运气才…

Python学习笔记之运算符的使用

Python学习笔记之运算符的使用 整型&#xff1a;二进制0b100十进制4、八进制0o100十进制64、十进制100、十六进制0x100十进制256浮点型&#xff1a;123.456&#xff0c;1.23456e2字符串型&#xff1a;‘Hello’&#xff0c;“Hello”布尔型&#xff1a;True、False复数型&…

网络基础入门(网络基础概念详解)

本篇文章主要是对网络初学的概念进行解释&#xff0c;可以让你对网络有一个大概整体的认知。 文章目录 一、简单认识网络 1、1 什么是网络 1、2 网络分类 二、网络模型 2、1OSI七层模型 2、1、1 简单认识协议 2、1、2 OSI七层模型解释 2、2 TCP/IP五层(或四层)模型 三、网络传…

前端系列-1 HTML+JS+CSS基础

背景&#xff1a; 前端系列会收集碎片化的前端知识点&#xff0c;作为自己工作和学习时的字典&#xff0c;欢迎读者收藏和使用。 笔者是后端开发&#x1f636;前端涉猎不深&#xff0c;因此文章重在广度和实用&#xff0c;对原理和性能不会过多深究。 1.html 1.1 html5网页结…

Leetcode---364场周赛

题目列表 2864. 最大二进制奇数 2865. 美丽塔 I 2866. 美丽塔 II 2867. 统计树中的合法路径数目 一、最大二进制奇数 这题只要你对二进制有了解(学编程的不会不了解二进制吧)&#xff0c;应该问题不大&#xff0c;这题要求最大奇数&#xff0c;1.奇数&#xff1a;只要保证…

国庆中秋特辑(六)大学生常见30道宝藏编程面试题

以下是 30 道大学生 Java 面试常见编程面试题和答案&#xff0c;包含完整代码&#xff1a; 什么是 Java 中的 main 方法&#xff1f; 答&#xff1a;main 方法是 Java 程序的入口点。它是一个特殊的方法&#xff0c;不需要被声明。当 Java 运行时系统执行一个 Java 程序时&…

安全基础 --- MySQL数据库的《锁》解析

MySQL的ACID &#xff08;1&#xff09;ACID是衡量事务的四个特性 原子性&#xff08;Atomicity&#xff0c;或称不可分割性&#xff09;一致性&#xff08;Consistency&#xff09;隔离性&#xff08;Isolation&#xff09;持久性&#xff08;Durability&#xff09; &…

Linux关于gittee的远端仓库的连接和git三板斧

目录 1.网页操作 2.Linux操作 查看Linux系统中是否安装git指令 安装git指令 链接远端仓库 设置 .gitignore文件 3.git三板斧 1.网页操作 首先我们要在gittee建立一个仓库 这是我自己的勾选方案&#xff0c;大家可以参考一下。 这个方案勾选最下面的三个选项才有&#x…

“童”趣迎国庆 安全“童”行-柿铺梁坡社区开展迎国庆活动

“金秋十月好心境&#xff0c;举国欢腾迎国庆。”国庆节来临之际&#xff0c;为进一步加强梁坡社区未成年人爱国主义教育&#xff0c;丰富文化生活&#xff0c;营造热烈喜庆、文明和谐的节日氛围。9月24日上午&#xff0c;樊城区柿铺街道梁坡社区新时代文明实践站联合襄阳市和时…

数据结构与算法——19.红黑树

这篇文章我们来讲一下红黑树。 目录 1.概述 1.1红黑树的性质 2.红黑树的实现 3.总结 1.概述 首先&#xff0c;我们来大致了解一下什么是红黑树 红黑树是一种自平衡的二叉查找树&#xff0c;是一种高效的查找树。红黑树具有良好的效率&#xff0c;它可在 O(logN) 时间内完…

你写过的最蠢的代码是?——后端篇

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页: &#x1f405;&#x1f43e;猫头虎的博客&#x1f390;《面试题大全专栏》 &#x1f995; 文章图文并茂&#x1f996…