【Hello Linux】多路转接之 epoll

本篇博客介绍: 多路转接之epoll

多路转接之epoll

    • 初识epoll
    • epoll相关系统调用
    • epoll的工作原理
    • epoll服务器编写
      • 成员变量
      • 构造函数
    • 循环函数
    • HandlerEvent函数
    • epoll的优缺点

我们学习epoll分为四部分

  • 快速理解部分概念 快速的看一下部分接口
  • 讲解epoll的工作原理
  • 手写epoll服务器
  • 工作模式

并且在这四个部分的内容学习完毕之后我们学习一下Reactor模式

初识epoll

按照man手册的说法

epoll是为了处理大量句柄而做出改进的poll

它在2.5.44内核中被引入到Linux

也是目前来说最常用的一种多路转接IO方式

epoll相关系统调用

epoll函数有三个相关的系统调用 分别是

  • epoll_create
  • epoll_ctl
  • epoll_wait

epoll_create函数

epoll_create函数的作用是创建一个epoll模型 函数原型如下

int epoll_create(int size);

参数说明:

  • 目前来说 epoll_create的参数是被废弃的 我们设置为256或者512就行 这样设计的原因是为了向前兼容

返回值说明:

  • 返回一个epoll模型 (实际上就是一个文件描述符)

epoll_ctl函数

epoll_ctl函数的作用是对创建出来的epoll模型进行操控 函数原型如下

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

参数说明:

  • int epfd 标识一个我们的IO模型
  • int op operator 表示我们想要做出什么样的操作
  • int fd 表示我们需要添加的文件描述符
  • epoll_event *event 表示我们需要关心哪些事件

返回值说明:

  • 函数成功调用返回0 失败返回-1 同时错误码将被设置

epoll_wait函数

epoll_wait函数的作用是监视我们关心的关键描述符 函数原型如下

int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);

参数说明:

  • int epfd 标识我们的epoll模型
  • struct epoll_event *events 输出型参数 内核会拷贝已经就绪的事件到这里面
  • int maxevents events数组的元素个数
  • int timeout 和poll函数中的timeout一样 等待事件 单位是毫秒

epoll的工作原理

我们之前的学习的多路转接函数 无论是select还有poll 它们都需要我们做下面的操作

  1. 让我们维护一个第三方的数组
  2. 都需要遍历整个数组
  3. 都需要经历用户到内核 内核到用户的事件通知

而我们的epoll工作模式则不同

操作系统硬件上的工作模式如下

这是一个缩略版的操作系统图
在这里插入图片描述

那么现在问题来了 操作系统是如何知道硬件里面有数据了呢?

(这个硬件可以是网卡 可以是键盘等等)

具体解释如下图
在这里插入图片描述
而epoll的工作原理如下

还是该图
在这里插入图片描述

当我们创建一个epoll模型之后操作系统底层会帮助我们维护一颗红黑树

在这里插入图片描述
红黑树的节点里面维护着很多元素 其中最重要的是两个

  • 文件描述符
  • 事件

所以说这颗红黑树解决的是用户通知内核的问题

用户通知内核自己要关心哪些文件描述符的哪些事件之后 操作系统就会生成一个节点然后插入到这颗红黑树当中

而这颗红黑树就是对应我们select和poll当中的数组

只不过此时它就由操作系统进行维护了

而我们内核通知用户的则是通过消息队列通知

我们可以这么理解 在内核维护的红黑树旁边有一个消息队列

每当有fd的事件就绪的时候就会在该队列上添加一个元素
在这里插入图片描述
于是我们用户读取的时候时间复杂度变为了O(1)

操作系统什么时候构建就绪队列节点呢?

操作系统在调用驱动的时候构建就绪队列节点

在生成红黑树节点的时候 在驱动中 每个节点都会生成一个自己的回调函数

于是在经历了硬件中断到读取数据的过程后 操作系统会调用驱动中的回调函数来获取该节点的数据 并且根据这些数据(fd和events)构建就绪节点 最后将构建好的节点插入到队列中


我们将上面的一整套机制称为epoll模型

那么我们现在再来回顾下epoll的三个函数

  • epoll_create
  • epoll_ctl
  • epoll_wait

它们的作用分别是

  • epoll_create : 创建epoll模型 包括红黑树 就绪队列 回调函数等
  • epoll_ctl : 对于红黑树的节点进行注册
  • epoll_wait : 获取就绪队列中的内容

为什么epoll_create返回一个文件描述符 而epoll_ctl和epoll_wait需要用到这个文件描述符呢?

这个问题最本质的原因是因为文件描述符表是随进程的 具体理解我们可以看下图

在这里插入图片描述
我们都知道每个进程都对应一个PCB结构 而每个PCB结构中都会有一个file struct结构体 这个结构体中有一个文件数组 每个下标对应一个文件描述符

而epoll_create的本质就是打开了一个文件 所以被分配了一个文件描述符

在这个文件中有个void* p指针 可以找到我们上面说的那些红黑树 就绪队列等等


这里还有一些关于epoll服务器的一些小细节

epoll底层维护的红黑树key值是什么呢?

是fd文件描述符 它是一个绝佳的天然key值 既不会重复 又容易排序

用户需要关系os对于fd和event的管理吗

不需要 os会在底层完成这些事

epoll为什么高效呢

  1. 因为epoll底层维护的是红黑树结构 对比数组来说增删改查有着天然的优势
  2. 我们不需要主动去询问哪些文件是否就绪 os会自动将其添加到就绪队列中
  3. 在寻找就绪文件的时候 由于我们使用的是就绪队列 时间复杂度是O(1) 而遍历数组的时间复杂度则是O(N)

epoll有线程安全问题嘛?

没有

实际上就绪队列是一个经典的生产者消费者模型 os生成数据 而用户消费数据 所以说这个队列实际上是一个临界资源 所以说操作系统在底层对其做了一些加锁处理 让他变为线程安全的

如果底层没有就绪事件 我们上层应该怎么办呢?

根据timeout参数来决定

  • 如果timeout为0 则是非阻塞
  • 如果timeout为-1 则是阻塞
  • 如果timeout大于0 则表示我们要等待多少毫秒之后去读取

epoll服务器编写

接下来我们开始设计一个epoll服务器

成员变量

首先作为一个基于TCP协议的服务器 我们必须要有listen套接字和端口号

    int _listensock;                                   uint16_t _port; 

其次作为一个epoll服务器 我们还必须要有一个epfd作为句柄来标识一个epoll模型

    int _epfd; 

此外我们还需要设置一个数组来接收epoll_wait的数据

    struct epoll_event* _revs;    int _revs_num;    

构造函数

    ep_server(const int& port = default_port)    :_port(port)                                 {                        // 1. create listensock     _listensock = Sock::Socket();    Sock::Bind(_listensock , _port);    Sock::Listen(_listensock);          // 2. create epoll_epfd = epoll::createepoll(); logMessage(DEBUG , "create epoll_server success, epfd: %d , listensock: %d " ,_epfd , _listensock);     // 3. append listen socket to epollif(epoll::epollctl(_epfd , EPOLL_CTL_ADD , _listensock , EPOLLIN))     {logMessage(DEBUG , "epollctl add success %d");} else {exit(6);}                                   }   

我们这里不直接使用epoll的原生函数来进行操作 而是进行一下封装

封装后的epoll类如下

class epoll    
{    public:    static const int gsize = 256;    public:    static int createepoll()    {    int epfd  = epoll_create(gsize);    if (epfd > 0)    {    return epfd;    }    else    {// errexit(5);}}  static bool epollctl(int epfd , int oper , int sock , uint32_t events)    {    struct epoll_event ev;    ev.data.fd = sock;    ev.events = events;    int ret = epoll_ctl(epfd , oper , sock , &ev);    return ret == 0;                                                                                                          }static int epollwait(int epfd , struct epoll_event res[] , int num , int timeout)      {      return epoll_wait(epfd , res , num , timeout);                                                                            }                                                                     
}; 

循环函数

我们服务器肯定不是只accept一次就完事了 所以说我们需要设计一个循环函数来重复执行accept的动作

我们分析下 首先我们每次循环肯定是要检测一次epoll就绪队列中有没有数据的 如果有的话 我们就直接从这个里面拿数据 并且把这个数据拿出来

特别注意 如果是listen套接字中的数据 我们还需要往 struct_events 中添加数据

每次循环的大概代码如下

                  int n = epoll_wait(_epfd, _revs, _num, timeout);    switch (n)    {    case 0:    logMessage(NORMAL, "timeout ...");    break;    case -1:    logMessage(WARNING, "epoll_wait failed, code: %d, errstring: %s", errno, strerror(errno));    break;    default:    logMessage(NORMAL, "have event ready");    //HandlerEvent(n);    break;   

我们将处理函数重新封装

HandlerEvent函数

在每次循环的时候我们成功使用epoll_wait拿到了就绪队列里的数据之后会走到这里

这里我们要进行判断 到底是listensock就绪了还是普通sock套接字就绪了

如果是listensock套接字就绪就代表我们要接收一个新的请求 如果是普通sock就绪就代表我们可以读取请求了

          void HandlerEvent(int readyNum)    {    logMessage(DEBUG, "HandlerEvent in");    for (int i = 0; i < readyNum; i++)    {    uint32_t events = _revs[i].events;    int sock = _revs[i].data.fd;    if (sock == _listensock && (events & EPOLLIN))    {    //_listensock读事件就绪, 获取新连接    std::string clientip;    uint16_t clientport;    int fd = Sock::Accept(sock, &clientip, &clientport);    if (fd < 0)    {    logMessage(WARNING, "accept error");                                                                  continue;    }    // 获取fd成功,可以直接读取吗??不可以,放入epoll    struct epoll_event ev;    ev.events = EPOLLIN;    ev.data.fd = fd;    epoll_ctl(_epfd, EPOLL_CTL_ADD, fd, &ev);    }    else if (events & EPOLLIN)    {    // 普通的读事件就绪    // 依旧有问题    char buffer[1024];// 把本轮数据读完,就一定能够读到一个完整的请求吗??int n = recv(sock, buffer, sizeof(buffer), 0);if (n > 0){buffer[n] = 0;logMessage(DEBUG, "client# %s", buffer);// TODOstd::string response = func_(buffer);send(sock, response.c_str(), response.size(), 0);}else if (n == 0){// 建议先从epoll移除,才close fdepoll_ctl(_epfd, EPOLL_CTL_DEL, sock, nullptr);close(sock);logMessage(NORMAL, "client quit");}                                                                                                         else{// 建议先从epoll移除,才close fdepoll_ctl(_epfd, EPOLL_CTL_DEL, sock, nullptr);close(sock);logMessage(ERROR, "recv error, code: %d, errstring: %s", errno, strerror(errno));}}else{}}logMessage(DEBUG, "HandlerEvent out");}

其实到这里 我们简单的epoll服务器就做完了

我们接下来还要学习下epoll服务器的工作模式

epoll的优缺点

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/124018.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

信息安全:网络安全漏洞防护技术原理与应用.

信息安全&#xff1a;网络安全漏洞防护技术原理与应用. 网络安全漏洞又称为脆弱性&#xff0c;简称漏洞。漏洞一般是致使网络信息系统安全策略相冲突的缺陷&#xff0c;这种缺陷通常称为安全隐患。 安全漏洞的影响主要有机密性受损、完整性破坏、可用性降低、抗抵赖性缺失、可…

MQTT 服务器搭建(基于mosquitto)

1、前言 MQTT&#xff08;Message Queuing Telemetry Transport&#xff0c;消息队列遥测传输协议&#xff09;&#xff0c;是一种基于发布/订阅&#xff08;publish/subscribe&#xff09;模式的"轻量级"通讯协议&#xff0c;该协议构建于TCP/IP协议上&#xff0c;…

基于.Net Core实现自定义皮肤WidForm窗口

前言 今天一起来实现基于.Net Core、Windows Form实现自定义窗口皮肤&#xff0c;并实现窗口移动功能。 素材 准备素材&#xff1a;边框、标题栏、关闭按钮图标。 窗体设计 1、创建Window窗体项目 2、窗体设计 拖拉4个Panel控件&#xff0c;分别用于&#xff1a;标题栏、关…

【计算机组成原理】考研真题攻克与重点知识点剖析 - 第 1 篇:计算机系统概述

前言 本文基础知识部分来自于b站&#xff1a;分享笔记的好人儿的思维导图&#xff0c;感谢大佬的开源精神&#xff0c;习题来自老师划的重点以及考研真题。此前我尝试了完全使用Python或是结合大语言模型对考研真题进行数据清洗与可视化分析&#xff0c;本人技术有限&#xff…

请求转发与请求作用域

创建input.jsp页面&#xff0c;通过表单输入学号、姓名后&#xff0c;单击登录按钮&#xff0c;控制转发到FirstServlet对其进行处理&#xff0c;然后通过请求对象的getRequestDispartcher()获得RequestDispartcher对象&#xff0c;将请求转发至SecondServlet&#xff0c;在Sec…

简单的考试系统

开发一个简单的考试系统&#xff0c;在HTML页面中建立一个表单&#xff0c;通过post方法传递参数。题目类型包括单选题、多选题和填空题&#xff0c;要求程序给出考试成绩。 <!DOCTYPE html> <html> <head><title>question.html</title><met…

第1篇 目标检测概述 —(3)YOLO系列算法

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。YOLO&#xff08;You Only Look Once&#xff09;系列算法是一种目标检测算法&#xff0c;主要用于实时物体检测。相较于传统的目标检测算法&#xff0c;YOLO具有更快的检测速度和更高的准确率。YOLO系列算法的核心思想是将…

基于SSM的视频点播系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用Vue技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

阿里云PolarDB自研数据库详细介绍_兼容MySQL、PostgreSQL和Oracle语法

阿里云PolarDB数据库是阿里巴巴自研的关系型分布式云原生数据库&#xff0c;PolarDB兼容三种数据库引擎&#xff1a;MySQL、PostgreSQL、Oracle&#xff08;语法兼容&#xff09;&#xff0c;目前提供云原生数据库PolarDB MySQL版、云原生数据库PolarDB PostgreSQL版和云原生数…

自动驾驶中的感知模型:实现安全与智能驾驶的关键

自动驾驶中的感知模型&#xff1a;实现安全与智能驾驶的关键 文章目录 引言感知模型的作用感知模型的技术安全与挑战结论 2023星火培训【专项营】Apollo开发者社区布道师倾力打造&#xff0c;包含PnC、新感知等的全新专项课程上线了。理论与实践相结合&#xff0c;全新的PnC培训…

设计模式(包括Spring)、贯穿项目梳理与源码知识点

目标&#xff1a;高复用性&#xff0c;高内聚&#xff0c;低耦合 目的&#xff1a;高可读性&#xff0c;重用性&#xff0c;可靠性 类的六种关系 依赖&#xff0c;类中用到了对方&#xff0c;没有对方连编译都通不过&#xff0c;如下的几种关系全部是依赖关系泛化/继承&…

Vue项目搭建图文详解教程

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl 预备工作 请在本地创建文件夹用于存放Vue项目&#xff0c;例如&#xff1a;创建HelloWorld文件夹存放即将创建的Vue新项目。 创建Vue项目 首先&#xff0c;请在DOS中将目录…