Kafka日志索引详解以及生产常见问题分析与总结

文章目录

  • 1、Kafka的Log日志梳理
    • 1.1、Topic下的消息是如何存储的?
      • 1.1.1、 log文件追加记录所有消息
      • 1.1.2、 index和timeindex加速读取log消息日志。
    • 1.2、文件清理机制
      • 1.2.1、如何判断哪些日志文件过期了
      • 1.2.2、过期的日志文件如何处理
    • 1.3、Kafka的文件高效读写机制
      • 1.3.1、Kafka的文件结构
      • 1.3.2、顺序写磁盘
      • 1.3.3、零拷贝

1、Kafka的Log日志梳理

这一部分数据主要包含当前Broker节点的消息数据(在Kafka中称为Log日志)。这是一部分无状态的数据,也就是说每个Kafka的Broker节点都是以相同的逻辑运行。这种无状态的服务设计让Kafka集群能够比较容易的进行水平扩展。比如你需要用一个新的Broker服务来替换集群中一个旧的Broker服务,那么只需要将这部分无状态的数据从旧的Broker上转移到新的Broker上就可以了。

1.1、Topic下的消息是如何存储的?

​ 在搭建Kafka服务时,我们在server.properties配置文件中通过log.dir属性指定了Kafka的日志存储目录。实际上,Kafka的所有消息就全都存储在这个目录下。

在这里插入图片描述
这些核心数据文件中,.log结尾的就是实际存储消息的日志文件。他的大小固定为1G(由参数log.segment.bytes参数指定),写满后就会新增一个新的文件。一个文件也成为一个segment文件名表示当前日志文件记录的第一条消息的偏移量。

​ .index和.timeindex是日志文件对应的索引文件。不过.index是以偏移量为索引来记录对应的.log日志文件中的消息偏移量。而.timeindex则是以时间戳为索引。

另外的两个文件,partition.metadata简单记录当前Partition所属的cluster和Topic。leader-epoch-checkpoint文件参见上面的epoch机制。

​ 这些文件都是二进制的文件,无法使用文本工具直接查看。但是,Kafka提供了工具可以用来查看这些日志文件的内容。

#1、查看timeIndex文件
[oper@worker1 bin]$ ./kafka-dump-log.sh --files /app/kafka/kafka-logs/secondTopic-0/00000000000000000000.timeindex 
Dumping /app/kafka/kafka-logs/secondTopic-0/00000000000000000000.timeindex
timestamp: 1661753911323 offset: 61
timestamp: 1661753976084 offset: 119
timestamp: 1661753977822 offset: 175
#2、查看index文件
[oper@worker1 bin]$ ./kafka-dump-log.sh --files /app/kafka/kafka-logs/secondTopic-0/00000000000000000000.index      
Dumping /app/kafka/kafka-logs/secondTopic-0/00000000000000000000.index
offset: 61 position: 4216
offset: 119 position: 8331
offset: 175 position: 12496
#3、查看log文件
[oper@worker1 bin]$ ./kafka-dump-log.sh --files /app/kafka/kafka-logs/secondTopic-0/00000000000000000000.log
Dumping /app/kafka/kafka-logs/secondTopic-0/00000000000000000000.log
Starting offset: 0
baseOffset: 0 lastOffset: 1 count: 2 baseSequence: 0 lastSequence: 1 producerId: 7000 producerEpoch: 0 partitionLeaderEpoch: 11 isTransactional: false isControl: false deleteHorizonMs: OptionalLong.empty position: 0 CreateTime: 1661753909195 size: 99 magic: 2 compresscodec: none crc: 342616415 isvalid: true
baseOffset: 2 lastOffset: 2 count: 1 baseSequence: 2 lastSequence: 2 producerId: 7000 producerEpoch: 0 partitionLeaderEpoch: 11 isTransactional: false isControl: false deleteHorizonMs: OptionalLong.empty position: 99 CreateTime: 1661753909429 size: 80 magic: 2 compresscodec: none crc: 3141223692 isvalid: true
baseOffset: 3 lastOffset: 3 count: 1 baseSequence: 3 lastSequence: 3 producerId: 7000 producerEpoch: 0 partitionLeaderEpoch: 11 isTransactional: false isControl: false deleteHorizonMs: OptionalLong.empty position: 179 CreateTime: 1661753909524 size: 80 magic: 2 compresscodec: none crc: 1537372733 isvalid: true
.......

​ 这些数据文件的记录方式,就是我们去理解Kafka本地存储的主线。对这里面的各个属性理解得越详细,也就表示对Kafka的消息日志处理机制理解得越详细。

1.1.1、 log文件追加记录所有消息

​ 首先:在每个文件内部,Kafka都会以追加的方式写入新的消息日志。position就是消息记录的起点,size就是消息序列化后的长度。Kafka中的消息日志,只允许追加,不支持删除和修改。所以,只有文件名最大的一个log文件是当前写入消息的日志文件,其他文件都是不可修改的历史日志。

​ 然后:每个Log文件都保持固定的大小。如果当前文件记录不下了,就会重新创建一个log文件,并以这个log文件写入的第一条消息的偏移量命名。这种设计其实是为了更方便进行文件映射,加快读消息的效率。

1.1.2、 index和timeindex加速读取log消息日志。

​ 详细看下这几个文件的内容,就可以总结出Kafka记录消息日志的整体方式:

在这里插入图片描述
首先:index和timeindex都是以相对偏移量的方式建立log消息日志的数据索引。比如说 0000.index和0550.index中记录的索引数字,都是从0开始的。表示相对日志文件起点的消息偏移量。而绝对的消息偏移量可以通过日志文件名 + 相对偏移量得到。

​ 然后:这两个索引并不是对每一条消息都建立索引。而是Broker每写入40KB的数据,就建立一条index索引。由参数log.index.interval.bytes定制。

log.index.interval.bytes
The interval with which we add an entry to the offset indexType:	int
Default:	4096 (4 kibibytes)
Valid Values:	[0,...]
Importance:	medium
Update Mode:	cluster-wide

​ index文件的作用类似于数据结构中的跳表,他的作用是用来加速查询log文件的效率。而timeindex文件的作用则是用来进行一些跟时间相关的消息处理。比如文件清理。

​ 这两个索引文件也是Kafka的消费者能够指定从某一个offset或者某一个时间点读取消息的原因。

1.2、文件清理机制

​ Kafka为了防止过多的日志文件给服务器带来过大的压力,他会定期删除过期的log文件。Kafka的删除机制涉及到几组配置属性:

1.2.1、如何判断哪些日志文件过期了

log.retention.check.interval.ms:定时检测文件是否过期。默认是 300000毫秒,也就是五分钟。
log.retention.hours , log.retention.minutes, log.retention.ms 。 这一组参数表示文件保留多长时间。默认生效的是log.retention.hours,默认值是168小时,也就是7天。如果设置了更高的时间精度,以时间精度最高的配置为准。
在检查文件是否超时时,是以每个.timeindex中最大的那一条记录为准。

1.2.2、过期的日志文件如何处理

log.cleanup.policy:日志清理策略。有两个选项,delete表示删除日志文件。 compact表示压缩日志文件。
当log.cleanup.policy选择delete时,还有一个参数可以选择。log.retention.bytes:表示所有日志文件的大小。当总的日志文件大小超过这个阈值后,就会删除最早的日志文件。默认是-1,表示无限大。
​ 压缩日志文件虽然不会直接删除日志文件,但是会造成消息丢失。压缩的过程中会将key相同的日志进行压缩,只保留最后一条。

1.3、Kafka的文件高效读写机制

​ 这是Kafka非常重要的一个设计,同时也是面试频率超高的问题。可以分几个方向来理解。

1.3.1、Kafka的文件结构

​ Kafka的数据文件结构设计可以加速日志文件的读取。比如同一个Topic下的多个Partition单独记录日志文件,并行进行读取,这样可以加快Topic下的数据读取速度。然后index的稀疏索引结构,可以加快log日志检索的速度。

1.3.2、顺序写磁盘

​ 这个跟操作系统有关,主要是硬盘结构。

​ 对每个Log文件,Kafka会提前规划固定的大小,这样在申请文件时,可以提前占据一块连续的磁盘空间。然后,Kafka的log文件只能以追加的方式往文件的末端添加(这种写入方式称为顺序写),这样,新的数据写入时,就可以直接往直前申请的磁盘空间中写入,而不用再去磁盘其他地方寻找空闲的空间(普通的读写文件需要先寻找空闲的磁盘空间,再写入。这种写入方式称为随机写)。由于磁盘的空闲空间有可能并不是连续的,也就是说有很多文件碎片,所以磁盘写的效率会很低。

​ kafka的官网有测试数据,表明了同样的磁盘,顺序写速度能达到600M/s,基本与写内存的速度相当。而随机写的速度就只有100K/s,差距比加大。

1.3.3、零拷贝

​ 零拷贝是Linux操作系统提供的一种IO优化机制,而Kafka大量的运用了零拷贝机制来加速文件读写。

​ 传统的一次硬件IO是这样工作的。如下图所示:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/124154.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构—栈、队列、链表

一、栈 Stack(存取O(1)) 先进后出,进去123,出来321。 基于数组:最后一位为栈尾,用于取操作。 基于链表:第一位为栈尾,用于取操作。 1.1、数组栈 /*** 基于数组实现的顺序栈&#…

【记录】IDA|IDA怎么查看当前二进制文件自动分析出来的内存分布情况(内存范围和读写性)

IDA版本:7.6 背景:我之前一直是直接看Text View里面的地址的首尾地址来判断内存分布情况的,似乎是有点不准确,然后才想到IDA肯定自带查看内存分布情况的功能,而且很简单。 可以通过View-Toolbars-Segments&#xff0c…

同学苹果ios的ipa文件应用企业代签选择签名商看看这篇文章你再去吧

同学我们要知道随着互联网的发展,苹果应用市场的火爆,越来越多的开发者加入到苹果应用开发行业中来。同时,苹果应用市场上的应用也在不断增多,用户数量也在不断增加,苹果应用代签是指通过第三方公司为开发者的应用进行…

【Redis】五大数据类型 、历史概述、nosql分类

文章目录 NoSql概述NoSql年代缓存 Memcached MySQL垂直拆分(读写分离)分库分表水平拆分Mysql集群最近为什么要用 NoSqlNoSql的四大分类 Redis测试性能 五大数据类型keyStringSetHashZset 前言:本文为看狂神视频记录的笔记 NoSql概述 NoSql年…

Arcgis快速计算NDVI

Arcgis快速计算NDVI 一、问题描述 如何使用Arcgis像ENVI一样波段计算NDVI的值,事实上,Arcgis更快速一些。 二、操作步骤 首先准备好影像 打开窗口-影像分析 点击左上角 点击确定 (发现自己使用的遥感影像不对劲,是计算好了…

c++的io流

文章目录 1.C语言的输入和输出2.流失是什么3.cIO流3.1c标准io流3.2c文件io流 4.stringstream的简单介绍 1.C语言的输入和输出 C语言中我们用到的最频繁的输入输出方式就是scanf ()与printf(),scanf(): 从标准输入设备(键盘)读取数据,并将值存放在变量中…

Arcgis提取玉米种植地分布,并以此为掩膜提取遥感影像

Arcgis提取玉米种植地分布上,并以此为掩膜提取遥感影像 一、问题描述 因为之前反演是整个研究区,然而土地利用类型有很多类,只在农田或者植被上进行反演,需要去除水体、建筑等其他类型,如何处理得到下图中只有耕地类…

raw图片处理软件:DxO PhotoLab 6 mac中文版支持相机格式

DxO PhotoLab 6 mac是一款专业的RAW图片处理软件,适用于Mac操作系统。它具有先进的图像处理技术和直观易用的界面,可帮助用户轻松地将RAW格式的照片转换为高质量的JPEG或TIFF图像。 DxO PhotoLab 6支持多种相机品牌的RAW格式,包括佳能、尼康、…

MySQL 性能优化

MySQL 性能优化 数据库命名规范 所有数据库对象名称必须使用小写字母并用下划线分割所有数据库对象名称禁止使用 MySQL 保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来)数据库对象的命名要能做到见名识意,并且最…

格点数据可视化(美国站点的日降雨数据)

获取美国站点的日降雨量的格点数据,并且可视化 导入模块 from datetime import datetime, timedelta from urllib.request import urlopenimport cartopy.crs as ccrs import cartopy.feature as cfeature import matplotlib.colors as mcolors import matplotli…

力扣-367.有效的完全平方数

暴力 class Solution { public:bool isPerfectSquare(int num) {for(long i 1; i * i < num; i) {if(i * i num) return true;}return false;} };二分查找 class Solution { public:bool isPerfectSquare(int num) {int left 1, right num;while(left < right) {in…

MySQL-MVCC(Multi-Version Concurrency Control)

MySQL-MVCC&#xff08;Multi-Version Concurrency Control&#xff09; MVCC&#xff08;多版本并发控制&#xff09;&#xff1a;为了解决数据库并发读写和数据一致性的问题&#xff0c;是一种思想&#xff0c;可以有多种实现方式。 核心思想&#xff1a;写入时创建行的新版…