【数据结构与算法】树、二叉树的概念及结构(详解)

前言:

💥🎈个人主页:​​​​​​Dream_Chaser~ 🎈💥

✨✨专栏:http://t.csdn.cn/oXkBa

⛳⛳本篇内容:c语言数据结构--树以及二叉树的概念与结构

目录

一.树概念及结构

1.树的概念

1.1树与非树

树的特点:

非树(图)的特点:

1.2 关于树的细致概念

1.3树的表示

1.4树在实际中的运用(表示文件系统的目录树结构)

二.二叉树概念及结构

1.概念

2.现实中的二叉树:

 2.3特殊的二叉树:

2.4 二叉树的性质

证明性质2和1

习题练习


一.树概念及结构

1.树的概念

         树是一种 非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。 把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的

1.1树与非树

树的特点:
空树 -- 结点数为0的树
非空树:
  • 有一个特殊的结点,称为根结点,根节点没有前驱结点(没有父节点)

下面的两点一起理解:

  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  • 因此,树是递归定义的。

可以理解为:

由根节点指向了各子树,子树的双亲节点又可以作为根节点,指向它们的孩子节点

非树(图)的特点:
1.除了根结点外,每个结点有且仅有一个父结点;

2.子树是不相交的
以下的这个结构是图(允许相交),不是树
注意:树形结构中,子树之间不能有交集,否则就不是树形结构

3.一棵N个结点的树有N-1条边

1.2 关于树的细致概念

下面有个✅的是比较重要的知识点

✅节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6

✅叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点

✅非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点

✅双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

✅孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

✅兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点

树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6

节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

✅树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

✅节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

✅子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林

对各知识点的进一步画图解析:

  • 节点的度:与该节点直接相连的边的数量

  • 叶节点(终端节点):度为0的节点

  • 分支节点(非终端节点):度不为0的节点

  • 父节点(双亲节点):一个节点的直接前驱就是它的父节点

  • 子节点(孩子节点):一个节点的直接后继就是它的子节点
  • 兄弟节点:由同一个父节点生出来的都是互为兄弟节点
  • 树的度:一棵树中,最大的节点的度称为树的度
  • 节点的层次:从上往下数,从根开始定义起,根为第1层,根的子节点为第2层,以此类推;(默认是从1开始)
  • 树的高度(深度):树中节点的最大层次,下图的高度就是4
  • 节点的高度:从下往上数
  • 堂兄弟节点双亲在同一层的节点互为堂兄弟
  • 节点的祖先指从该节点向上追溯到根节点的路径上的所有节点,包括该节点的父节点、父节点的父节点,以此类推,直到达到根节点为止。
  • 子孙从该节点向下追溯到所有末端节点的路径上的所有节点,包括该节点的直接子节点、子节点的子节点,以此类推,直到达到叶子节点为止。
  • 森林:是由多个不相交的树组成的集合(并查集)

1.3树的表示

A: 如果明确了树的度,那么可以定义。

B、顺序表存储孩子。
 

C、双亲表示法。(每个位置只存双亲的指针或者下标) 

D、左孩子右兄弟表示法--简化树结构定义

         树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。
我们这里就简单的了解其中最常用的孩子兄弟表示法
代码实现:
typedef int DataType;
struct Node
{struct Node* _firstChild1; // 第一个孩子结点struct Node* _pNextBrother; // 指向其下一个兄弟结点DataType _data; // 结点中的数据域
};

画图解析:

1.4树在实际中的运用(表示文件系统的目录树结构)

二.二叉树概念及结构

1.概念

一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

 从上图可以看出:

1. 二叉树不存在度大于2的结点(度为0也可以)
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:

2.现实中的二叉树:

 2.3特殊的二叉树:

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树。

2.完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.4 二叉树的性质

1、若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点。
2、若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1。
3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2 ,则有 n0= n2+1
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度h=log2(n+1). (ps:log2(n+1)是log以2为底,n+1为对数)
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

        1. i>0 i 位置节点的双亲序号: (i-1)/2 i=0 i 为根节点编号,无双亲节点
        2. 2i+1<n ,左孩子序号: 2i+1 2i+1>=n 否则无左孩子
        3. 2i+2<n ,右孩子序号: 2i+2 2i+2>=n 否则无右孩子

证明性质2和1

如何证明性质2和性质1,以下是证明过程:

习题练习

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( B)
A 不存在这样的二叉树
B 200
C 198
D 199
解析:
2.下列数据结构中,不适合采用顺序存储结构的是( A)
A 非完全二叉树
B 堆
C 队列
D 栈
解析:
顺序存储结构适合于具有连续存储空间的数据结构,其中元素按照线性顺序存储。 对于非完全二叉树,由于其结构不规则,无法通过连续的存储空间来表示。因此,非完全二叉树不适合采用顺序存储结构。
B. 堆、C. 队列、D. 栈都可以通过顺序存储结构有效地实现。堆是一种完全二叉树,可以使用数组来表示。队列和栈可以使用数组或者链表来表示,都适合顺序存储结构。
3.在具有 2n 个结点的完全二叉树中,叶子结点个数为(A )
A n
B n+1
C n-1
D n/2

和节点个数相关的公式有二:

n0 = n2 + 1,N = n0 + n1 + n2

已知总个数N为2n,那么只要知道n1即可求出n0.

这里有一个重要的结论:

        在完全二叉树中,如果节点总个数为奇数,则没有度为1的节点;如果节点总个数为偶数,只有一个度为1的节点。

                                          节点个数是偶数,只有一个度为1的节点


                                        节点个数是奇数,没有度为1的节点

2n为偶数,因此有一个度为1的节点。

2n = n0 + 1 + n2 = n0 + 1 + n0 - 1

2n = 2n0

n0 = n,故选A

4.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( B)
A 11
B 10
C 8
D 12
解析:
根据性质4,h=log2(n+1),n=531,h = log2(532),找一个最接近的数就是log2(512),也就是log2(2^9),向上取整,n=10;
5.一个具有767个节点的完全二叉树,其叶子节点个数为(B)
A 383
B 384
C 385
D 386
解析:
N=767个节点数是奇数个,所以N= n0+ n2(奇数个没有度为1的节点) ,
由n0 = n2+1; N  = 2n0 - 1 ,那么n0 = (N + 1) / 2 = 384 
本篇完,如有错误,欢迎指正,感谢来访!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/125435.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++设计模式之装饰模式:结构型】分析及示例

装饰模式&#xff08;Decorator Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许在运行时动态地给一个对象添加额外的行为。 描述 装饰模式通过创建一个包装器&#xff08;Wrapper&#xff09;来包裹原始对象&#xff0c;并在原始对象的行为前后添加额外的功能。…

前端 | AjaxAxios模块

文章目录 1. Ajax1.1 Ajax介绍1.2 Ajax作用1.3 同步异步1.4 原生Ajax 2. Axios2.1 Axios下载2.2 Axios基本使用2.3 Axios方法 1. Ajax 1.1 Ajax介绍 Ajax: 全称&#xff08;Asynchronous JavaScript And XML&#xff09;&#xff0c;异步的JavaScript和XML。 1.2 Ajax作用 …

定时器+按键控制LED流水灯模式+定时器时钟——“51单片机”

各位CSDN的uu们好呀&#xff0c;今天&#xff0c;小雅兰的内容是51单片机中的定时器以及按键控制LED流水灯模式&定时器时钟&#xff0c;下面&#xff0c;让我们进入51单片机的世界吧&#xff01;&#xff01;&#xff01; 定时器 按键控制LED流水灯模式 定时器时钟 源代…

第一百六十四回 如何实现NumberPicker

文章目录 1.概念介绍2.使用方法2.1 NumberPicker2.2 CupertinoPicker 3.示例代码4.内容总结 我们在上一章回中介绍了"如何在任意位置显示PopupMenu"相关的内容&#xff0c;本章回中将介绍如何实现NumberPicker.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1.概…

3D孪生场景搭建:参数化模型

1、什么是参数化模型 参数化模型是指通过一组参数来定义其形状和特征的数学模型或几何模型。这些参数可以用于控制模型的大小、形状、比例、位置、旋转、曲率等属性&#xff0c;从而实现对模型进行灵活的调整和变形。 在计算机图形学和三维建模领域&#xff0c;常见的参数化模…

Android改造CardView为圆形View,Kotlin

Android改造CardView为圆形View&#xff0c;Kotlin 可以利用androidx.cardview.widget.CardView的cardCornerRadius特性&#xff0c;将CardView改造成一个圆形的View&#xff0c;技术实现的关键首先设定CardView为一个宽高相等的View&#xff08;正方形&#xff09;&#xff0c…

华为云云耀云服务器L实例评测|Elasticsearch的Docker版本的安装和参数设置 端口开放和浏览器访问

前言 最近华为云云耀云服务器L实例上新&#xff0c;也搞了一台来玩&#xff0c;期间遇到各种问题&#xff0c;在解决问题的过程中学到不少和运维相关的知识。 本篇博客介绍Elasticsearch的Docker版本的安装和参数设置&#xff0c;端口开放和浏览器访问。 其他相关的华为云云…

Day-07 修改 Nginx 配置文件

至此&#xff1a; 简单的 Docker 安装 Nginx并启动算是成功了! ps: 如何修改 Nginx的配置、更改nginx 的资源文件&#xff1f; eg&#xff1a; 1、可以将容器中的目录和本机目录做映射。 2、达到修改本机目录文件就影响到容器中的文件。 1.本机创建实例文件夹 新建目录&#x…

ActiveMQ消息中间件介绍

一、ActiveMQ简介 ActiveMQ是Apache出品&#xff0c;最流行的&#xff0c;能力强劲的开源消息总线。ActiveMQ是一个完全支持JMS1.1和J2EE1.4规范的JMS Provide实现。尽管JMS规范出台已经是很久的事情了&#xff0c;但是JMS在当今的J2EE应用中仍然扮演这特殊的地位。 二、Active…

【Excel】快速提取某个符号前面的数据内容

【问题描述】 在使用excel整理数据过程中&#xff0c;经常与需要调整数据后&#xff0c;进行使用。 例如凭证导出后&#xff0c;科目列是包含科目编码和科目名称的。 但由于要将数据复制到其他的导入模板上使用&#xff0c;对应的模板只需要科目编码&#xff0c;不需要科目名称…