计算机毕设 大数据工作岗位数据分析与可视化 - python flask

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 项目实现
    • 3.1 概括
  • 3.2 Flask实现
    • 3.3 HTML页面交互及Jinja2
  • 4 **完整代码**
  • 5 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 基于大数据的工作岗位数据分析与可视化

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

1 课题背景

基于python+flask的python岗大数据可视化web系统,可以进行数据交互可视化,主题为python岗位相关大数据分析。

2 实现效果

📗Web_App动作描述

用户点击导航栏四个选项,跳转到想了解的页面

  • 平均月薪
  • 岗位数量
  • 工作经验
  • 最低学历

在这里插入图片描述
用户通过选择器点击想要了解的城市,可显示该城市的相关岗位数量

在这里插入图片描述

鼠标下拉可看文字结论分析

在这里插入图片描述

3 项目实现

3.1 概括

  • 主运行文件为 app.py 文件。
  • static 文件为网页样式。
  • templates 里的map.html系列文件为生成可视化图表的离线文件,作为引用文件。
  • data1.csv 等csv文件为引用的数据文档。csv档 为数据源。

在这里插入图片描述

  • 在flask环境下导入pandaspyecharts实现数据图表交互展示。
  • 写出四个@route,分别呈现为各省python相关岗位平均月薪、各省python相关岗位数量、工作经验与最低要求学历的职位分布数量、最低学历-工作经验与平 均月薪的相关图表展示。
  • df = pd.read_csv('xxx.csv',encoding = 'utf8', index_col="xxx")英文采用单字节编码,部分中文采用双字节编码。
  • 利用.renter/with open导入和打开文件。
  • 调用pyecharts模块作图传输到HTML页面。
  • 使用list字典循环。
  • 使用列表推导式进行取值。

3.2 Flask实现

数据循环

在这里插入图片描述
数据嵌套

在这里插入图片描述
推导式

在这里插入图片描述

条件判断

在这里插入图片描述
数据交互在这里插入图片描述

3.3 HTML页面交互及Jinja2

Jinja2介绍

jinja2是Flask作者开发的一个模板系统,起初是仿django模板的一个模板引擎,为Flask提供模板支持,由于其灵活,快速和安全等优点被广泛使用。

jinja2的优点

jinja2之所以被广泛使用是因为它具有以下优点:

  • 相对于Template,jinja2更加灵活,它提供了控制结构,表达式和继承等。
  • 相对于Mako,jinja2仅有控制结构,不允许在模板中编写太多的业务逻辑。
  • 相对于Django模板,jinja2性能更好。
  • Jinja2模板的可读性很棒。

项目代码

在这里插入图片描述

4 完整代码

import random
from calendar import c
from tkinter import Gridfrom flask import Flask,render_template,request
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Map, EffectScatter, HeatMap, Line,Grid
from pyecharts.faker import Faker
from pyecharts.globals import SymbolType
from pyecharts.charts import Pie,Bardf = pd.read_csv('data1.csv')
app = Flask(__name__)@app.route('/')
def map() -> 'html':a = (Map().add("平均月薪", list(zip(df., df.平均月薪)), "china").set_global_opts(title_opts=opts.TitleOpts(title="各省python相关岗位平均月薪"),visualmap_opts=opts.VisualMapOpts(min_=7164.08, max_=17096.07),))a.render("./templates/map.html")with open("./templates/map.html", encoding="utf8", mode="r") as f:map = "".join(f.readlines())the_select_province = {'北京':'4924','上海':'3114','广东':'3164','浙江':'1244','南京':'701','湖北':'412','江苏':'450','福建':'359','四川':'985','辽宁':'227','安徽':'236','湖南':'239','山东':'360','吉林':'88','江西':'60','天津':'355','山西':'417','陕西':'60','重庆':'179','黑龙江':'60','河南':'477','贵州':'60','河北':'60',}return render_template('python_map.html',the_map=map,the_province=the_select_province)element = list(set(most['分类']))@app.route('/effectscatter_symbol')
def effectscattere_symbol() -> 'html':df = pd.read_csv('data2.csv',encoding = 'utf8', index_col="名称")= list(df.loc["省"].values)[-24:]数量 = list(df.loc["数量"].values)[-24:]value = [[i, j, random.randint(0, 80)] for i in range(24) for j in range(24)]c = (HeatMap().add_xaxis().add_yaxis("数量", 数量, value).set_global_opts(title_opts=opts.TitleOpts(title="各省Python相关岗位数量"),visualmap_opts=opts.VisualMapOpts(),))c.render("./templates/effectscatter_symbol.html")with open("./templates/effectscatter_symbol.html", encoding="utf8", mode="r") as f:sym = "".join(f.readlines())return render_template('python_effectscatter_symbol.html',the_sym=sym,)1data_pie1 = data_pie.T.to_html()pie1_list = [num for num in data_pie['分类']]labels = [index for index in data_pie.index]@app.route('/pie_base')
def pie_base() -> 'html':df = pd.read_csv('data3.csv', encoding='utf8')bar = (Bar().add_xaxis(['不限', '3-5年', '1-3年', '5-10年', '无经验', '一年以下', '10年以上']).add_yaxis("职位数量", [6183, 5164, 4842, 1516, 366, 111, 34]).set_global_opts(title_opts=opts.TitleOpts(title="工作经验-职位分布数量")))line = (Line().add_xaxis(['本科', '大专', '不限', '硕士', '博士', '中专']).add_yaxis("职位数量", [9954, 3704, 3205, 1137, 88, 31]).set_global_opts(title_opts=opts.TitleOpts(title="最低要求学历-职位分布数量", pos_top="50%"),legend_opts=opts.LegendOpts(pos_top="50%"),))grid = (Grid().add(bar, grid_opts=opts.GridOpts(pos_bottom="60%", pos_right="0", height="30%")).add(line, grid_opts=opts.GridOpts(pos_top="60%", pos_right="0", height="30%")))bar,line,grid.render("./templates/pie_base.html")with open("./templates/pie_base.html", encoding="utf8", mode="r") as f:pie_base = "".join(f.readlines())return render_template('python_pie_base.html',the_pie_base=pie_base,)the_element3 = request.form['the_element3_selected']print(the_element3)element3_available = element3if the_element3 =='广州':the_level = 广州elif the_element3 =='上海':the_level = 上海elif the_element3 =='北京':the_level = 北京else:the_level = 其它def python_most():title1 = "最低学历"data_pie =  pd.DataFrame(pressure2.loc['最低学历与工作经验的关系']['分类'].value_counts())data_pie1 = data_pie.T.to_html()pie1_list = [num for num in data_pie['分类']]labels = [index for index in data_pie.index]@app.route('/Bar/')
def bar_base() -> Bar:df = pd.read_csv('data4.csv', encoding='utf8', index_col="学历")最低学历 = list(df.loc["最低学历"].values)[-6:]无经验 = list(df.loc["无经验"].values)[-6:]一年以下 = list(df.loc["一年以下"].values)[-6:]不限 = list(df.loc["不限"].values)[-24:]一至三年 = list(df.loc["一至三年"].values)[-24:]三至五年 = list(df.loc["三至五年"].values)[-24:]五至十年 = list(df.loc["五至十年"].values)[-24:]十年以上 = list(df.loc["十年以上"].values)[-24:]c = (Line().add_xaxis(最低学历).add_yaxis("无经验", 无经验).add_yaxis("一年以下", 一年以下).add_yaxis("不限", 不限).add_yaxis("一至三年", 一至三年).add_yaxis("三至五年", 三至五年).add_yaxis("五至十年", 五至十年).add_yaxis("十年以上", 十年以上).set_global_opts(title_opts=opts.TitleOpts(title="最低学历-工作经验与平均月薪",subtitle="平均月薪(元)")))c.render("./templates/Bar.html")with open("./templates/Bar.html", encoding="utf8", mode="r") as f:bar_base= "".join(f.readlines())return render_template('python_bar.html',the_bar_base=bar_base,)return render_template('first.html',the_title1 = title1,the_select_element1 = element1_available,the_data_pie1 = data_pie1,the_pyecharts_all = plot_all,the_pyecharts_all1 = plot_all1,the_pyecharts_all3 = plot_all3,

5 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/126739.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

沈阳陪诊系统|沈阳陪诊系统开发|沈阳陪诊系统功能和优势

在现代医疗服务中,陪诊系统服务正变得越来越重要。这项创新的服务提供了一种全新的方式,帮助患者在医院就诊时获得更好的照顾和支持。无论是面对复杂的医学流程还是需要心理支持,陪诊系统服务都能够为患者提供方便、专业的帮助。陪诊系统服务…

python+pygame+opencv+gpt实现虚拟数字人直播(一)

AI技术突飞猛进,不断的改变着人们的工作和生活。数字人直播作为新兴形式,必将成为未来趋势,具有巨大的、广阔的、惊人的市场前景。它将不断融合创新技术和跨界合作,提供更具个性化和多样化的互动体验,成为未来的一种趋…

leetCode 53.最大子数和 图解 + 贪心算法/动态规划+优化

53. 最大子数组和 - 力扣(LeetCode) 给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 子数组 是数组中的一个连续部分。 示例 1: 输入…

Android Camera FW 里的requestId和frameId

安卓相机frameworks里面经常出现requestId和frameId,最近简单看了一下代码,发现相关流程还是很复杂的,总结来看requestId 就是上层(java)发送的repeating(capture)请求的id,是从0开始递增的。 这是CameraD…

Godot 官方2D游戏笔记(1):导入动画资源和添加节点

前言 Godot 官方给了我们2D游戏和3D游戏的案例,不过如果是独立开发者只用考虑2D游戏就可以了,因为2D游戏纯粹,我们只需要关注游戏的玩法即可。2D游戏的美术素材简单,交互逻辑简单,我们可以把更多的时间放在游戏的玩法…

Transformer学习

这里写目录标题 Seq2Seq语音翻译为何不直接用语音辨识机器翻译?语法分析文章归类问题目标检测 TransformerEncoder结构multi-head attention block为何batch-norm 不如 layer-norm? Decoder结构decoder流程decoder结构decoder比encoder多了一个masked se…

数据结构--排序(2)

前言 排序(1)链接入口 快速排序 链接入口 归并排序 思想:将数组利用递归形式一直对半平分,将一组完整的数组分成若干份, 接着将它们相邻两个分为一组,进行排序,排序之后组合成一组&#xff0…

格雷希尔针对汽车空调高压管异型管口快速密封的G72R高压连接器

汽车散热是汽车热管理的重要部件,不管是燃油车还是新能源车,散热都是必不可少的零部件,从散热水箱、到车用空调冷凝器、蒸发器、空调高压管件等,由于位置和固定方式等影响,虽然管件直径比较标准,但接口部分…

基于Springboot实现旧物置换网站平台演示【项目源码+论文说明】分享

基于Springboot实现旧物置换网站平台演示 摘要 随着时代在一步一步在进步,旧物也成人们的烦恼,许多平台网站都在推广自已的产品像天猫、咸鱼、京东。所以开发出一套关于旧物置换网站成为必需。旧物置换网站主要是借助计算机,通过对用户进行管…

电压放大器在心电图中的作用是什么

心电图是一种常用的临床检测方法,用于评估心脏的电活动。在进行心电图检测时,为了保证测量结果的准确性和可靠性,需要使用一种特殊的电压放大器,即心电放大器,来增强心电信号并抑制噪音和干扰。 心电图信号具有微弱的幅…

python scanpy spatial空转全流程

Spatial mapping of cell types across the mouse brain (1/3) - estimating reference expression signatures of cell types — cell2location documentation Spatial mapping of cell types across the mouse brain (2/3) - cell2location — cell2location documentation #…

elementui修改message消息提示颜色

/* el弹出框样式 */ .el-message {top: 80px !important;border: 0; }.el-message * {color: var(--white) !important;font-weight: 600; }.el-message--success {background: var(--themeBackground); }.el-message--warning {background: var(--gradientBG); }.el-message--…