Go_原子操作和锁

原子操作和锁

本文先探究并发问题,再探究锁和原子操作解决问题的方式,最后进行对比。

并发问题

首先,我们看一下程序

num++

该程序表面看上去一步就可以运行完成,但是实际上,在计算机中是分三步运行的,如下图

image-20230929173947408

该程序分为三个步骤

①读取当前值:首先,程序需要读取变量 i 的当前值。过程为,将从内存中加载 'i’的值到CPU寄存器中

② 增加值:读取当前值,将存在寄存器中的值加1,而非在 i 的内存地址操作

③ 写回新值:将新的值写回到变量 i 所在的内存地址

假设 i 的初始值为0,调用两个协程运行 i++,理想情况下,i会变成2

运行过程中,会有六步操作,操作的不同顺序也影响着最后的结果

情况1

image-20230929173710410

两个协程依次运行,结果得到的是 2,完美运行

情况2

image-20230929173822254

当两个协程运行的顺序按上图运行,得到的结果是1,结果明显错误。

这就是并发过程中引起的错误。当多个goroutine在没有相互同步的情况下,访问某个共享的资源,同时对该资源进行读写时,就会处于相互竞争的状态,这就是并发中的资源竞争。

针对以上问题,有两种解决方案,一种是,另一种是原子操作

生活中的例子

想象一个场景,只有一间厕所,但有两个人都想上厕所,显然,厕所一个时刻只运行一个人使用。

第一个人使用前先将门锁上,以防外面的人进来,结束后,再把门锁打开,然后第二个人在锁门,上厕所,开锁。

程序改进

针对以上num++程序,我们可以类比操作。

第一个协程操作前上锁,然后进行num++操作,运行结束后,解锁。

接着第二个程序才能获取锁,再运行num++,运行结束后解锁。

go代码如下

var mu sync.Mutexfunc mutexAdd(){mu.lock()num++mu.unlock()
}

资源竞争

当多个协程进行资源竞争的时候,在一个协程获取到锁的时候,其余的协程进入阻塞态,等待资源释放。当该协程运行结束后,调度系统将阻塞队列其中的一个协程拿出来去获取锁,这其中涉及到切换上下文操作,需要消耗一定资源时间。

原子操作

原子操作,即不会被打断的操作。

原子操作是不可分割的,在执行完毕之前不会被其他任务或事物中断。

image-20230929173947408

如上图,i++可以分为三个操作,这三个操作均为原子操作。原子操作必须执行完毕后,才能执行下一个操作。

有没有一种可能,把这三个原子操作合成为一个原子操作?

可以的,在go的标准库atomic中提供了一系列原子操作,其中有atomic.AddInt64(&num,1),可以看作将num++中的三步合并成了一步原子操作。

当num++变成一步原子操作后,便不会出现上述提出的并发问题。因为原子操作是必须一步完成的,其中的过程不能和其他程序交错进行。

go代码如下

func atomicAdd(){atomic.AddInt64(&num,1)
}

运行对比

单个协程

单个协程在原子操作和加锁操作下的对比

image-20230929181028320

经过对比,可以发现加锁操作步骤多,耗损资源多,运行效率没有原子操作高

多个协程

假设有两个协程同时运行,协程G1先运行,协程G2等待。以下分别是原子操作和加锁操作的区别

原子操作,当协程G1运行结束后,G2操作

image-20230929181058855

  1. 在g1运行的时候,g2循环等待
  2. g1运行结束,g2开始执行程序
  3. 结束

加锁操作,当协程G1运行结束后,G2操作

image-20230929181125025

  1. 在g1运行的时候,g2获取锁失败,进入阻塞队列
  2. g1解锁后,调度系统调度协程g2,g2获取锁,进入临界区,切换上下文环境
  3. 执行程序
  4. 程序执行结束后,解锁,退出临界区

优势分析

原子操作优势

原子操作适用于对共享变量执行非常简单的操作,如递增、递减、设置标志位等。它们的优势在于性能高,在硬件级别上执行,无需上下文切换或内核调度

原子操作劣势

原子操作无法处理复杂的操作序列,也不能实现多个共享变量之间的复合操作。它们通常不能替代锁,特别是在需要执行多个步骤或操作复杂数据结构时。

锁操作优势

锁适用于需要对多个共享变量执行复杂操作的场景,允许实现复杂的并发算法,并确保一致性。

锁操作劣势

而锁操作伴随着上下文切换和内核调度,这会导致一些性能开销。如果不正常使用,还容易导致死锁和竞态条件

针对以上自增操作,显然,原子操作更占优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/126797.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023年腾讯云优惠券(代金券)无门槛领取方法汇总

腾讯云作为国内知名的云计算服务提供商,为了吸引用户,腾讯云经常推出各种优惠活动,其中包括优惠券的免费发放。通过使用优惠券,可以享受到更多的折扣和优惠,节省成本,获得更好的用户体验。那么,…

Ubuntu系统 OCR文字识别与 Latex公式识别

一、OCR文字识别 Step1:安装tesseract tesseract 是一个开源的OCR引擎,最初是由惠普公司开发用来作为其平板扫描仪的OCR引擎,2005年惠普将其开源出来,之后google接手负责维护。目前稳定的版本是3.0。4.0版本加入了基于LSTM的神经…

剑指offer——JZ82 二叉树中和为某一值的路径(一) 解题思路与具体代码【C++】

一、题目描述与要求 二叉树中和为某一值的路径(一)_牛客题霸_牛客网 (nowcoder.com) 题目描述 给定一个二叉树root和一个值 sum ,判断是否有从根节点到叶子节点的节点值之和等于 sum 的路径。 1.该题路径定义为从树的根结点开始往下一直到叶子结点所经过的结点 …

ChatGPT是如何产生心智的?

一、前言 - ChatGPT真的产生心智了吗? 来自斯坦福大学的最新研究结论,一经发出就造成了学术圈的轰动,“原本认为是人类独有的心智理论(Theory of Mind,ToM),已经出现在ChatGPT背后的AI模型上”…

PY32F003F18之sleep模式

一、WFI和WFE WFI: wait for interrupt,是"等待中断"的意思; WFE: wait for event,是"等待事件"的意思; 1)执行HAL_PWR_DisableSleepOnExit(),则令SLEEPONEXIT位置0; 当SL…

网络相关的基础知识整理

一、历史 1.1 早期阿帕网特点⭐⭐⭐ 没有纠错功能不能互联不同类型的计算机和不同类型的操作系统 1. 2 TCP/IP协议 点击【此处】跳转🔗 TCP:用来检测网络传输中差错的传输控制协议IP:专门负责对不同网络进行互联的互联网协议&#xff08…

Video Caption / 视频字幕:数据集总结

目录 一、背景 二、介绍 2.1 MSR-VTT 2.2 MSVD 2.3 VATEX 三、参考文献 一、背景 Video Caption / 视频字幕:常用指标(BELU-4,ROUGE-L,METEOR,CIDEr,SPICE)和数据集总结-CSDN博客Video C…

满足你甜食需求的葡萄酒是怎样的?

也许这是不言而喻的,但我们认为,如果没有一杯完美的葡萄酒来补充你最喜爱的菜肴的复杂风味,一顿美食就不完整。无论您是享用美味的葡萄酒作为开胃菜,还是搭配主菜,我们相信我们最喜爱的饮料是一餐中任何部分的完美补充…

智慧空调插座:智控生活好伴侣,节能降耗好帮手

所谓“智能插座”,就是在普通插座上增加Wi-Fi模块,通过手机APP控制单个或整个插座的电源通断,并统计一段时间的用电量。 目前市面上所销售的智能插座,大多具备可连接Wi-Fi网路功能,如此一 来便不需要额外再购买定时控…

Arcgis日常天坑问题(1)——将Revit模型转为slpk数据卡住不前

这段时间碰到这么一个问题,revit模型在arcgis pro里导出slpk的时候,卡在98%一直不动,大约有两个小时。 首先想到的是revit模型过大,接近300M。然后各种减小模型测试,还是一样的问题,大概花了两天的时间&am…

软考对找工作有用吗?

软考是指软件技术专业资格考试,是由中国人力资源和社会保障部主管的一项国家级考试。软考的目标是评估和认证软件技术人员的专业能力,提高软件行业的整体素质和竞争力。那么,软考对找工作有用吗?本文将从以下几个方面进行分析。 首…

LabVIEW开发教学实验室自动化INL和DNL测试系统

LabVIEW开发教学实验室自动化INL和DNL测试系统 如今,几乎所有的测量仪器都是基于微处理器的设备。模拟输入量在进行数字处理之前被转换为数字量。对于参加电气和电子测量课程的学生来说,了解ADC以及如何欣赏其性能至关重要。ADC的不确定性可以根据其传输…