Ultra-Fast-Lane-Detection-v2 {后处理优化}//参考

采用三次多项式拟合生成的anchor特征点,在给定的polyfit_draw函数中,degree参数代表了拟合多项式的度数。

具体来说,当我们使用np.polyfit函数进行数据点的多项式拟合时,我们需要指定一个度数。这个度数决定了多项式的复杂度。例如:

  • degree = 1:线性拟合,也就是最简单的直线拟合。拟合的多项式形式为 f(y)=ax+b。

  • degree = 2:二次多项式拟合。拟合的多项式形式为 f(y)=ax2+bx+c。

  • degree = 3:三次多项式拟合。拟合的多项式形式为 f(y)=ax3+bx2+cx+d。

...以此类推。

度数越高,多项式越复杂,可以更准确地拟合数据点,但也更容易过拟合(即模型过于复杂,过于依赖训练数据,对新数据的适应性差)。

import torch, os, cv2
from utils.dist_utils import dist_print
import torch, os
from utils.common import merge_config, get_model
import tqdm
import torchvision.transforms as transforms
from data.dataset import LaneTestDatasetdef pred2coords(pred, row_anchor, col_anchor, local_width = 1, original_image_width = 1640, original_image_height = 590):batch_size, num_grid_row, num_cls_row, num_lane_row = pred['loc_row'].shapebatch_size, num_grid_col, num_cls_col, num_lane_col = pred['loc_col'].shapemax_indices_row = pred['loc_row'].argmax(1).cpu()# n , num_cls, num_lanesvalid_row = pred['exist_row'].argmax(1).cpu()# n, num_cls, num_lanesmax_indices_col = pred['loc_col'].argmax(1).cpu()# n , num_cls, num_lanesvalid_col = pred['exist_col'].argmax(1).cpu()# n, num_cls, num_lanespred['loc_row'] = pred['loc_row'].cpu()pred['loc_col'] = pred['loc_col'].cpu()coords = []row_lane_idx = [1,2]col_lane_idx = [0,3]for i in row_lane_idx:tmp = []if valid_row[0,:,i].sum() > num_cls_row / 2:for k in range(valid_row.shape[1]):if valid_row[0,k,i]:all_ind = torch.tensor(list(range(max(0,max_indices_row[0,k,i] - local_width), min(num_grid_row-1, max_indices_row[0,k,i] + local_width) + 1)))out_tmp = (pred['loc_row'][0,all_ind,k,i].softmax(0) * all_ind.float()).sum() + 0.5out_tmp = out_tmp / (num_grid_row-1) * original_image_widthtmp.append((int(out_tmp), int(row_anchor[k] * original_image_height)))coords.append(tmp)for i in col_lane_idx:tmp = []if valid_col[0,:,i].sum() > num_cls_col / 4:for k in range(valid_col.shape[1]):if valid_col[0,k,i]:all_ind = torch.tensor(list(range(max(0,max_indices_col[0,k,i] - local_width), min(num_grid_col-1, max_indices_col[0,k,i] + local_width) + 1)))out_tmp = (pred['loc_col'][0,all_ind,k,i].softmax(0) * all_ind.float()).sum() + 0.5out_tmp = out_tmp / (num_grid_col-1) * original_image_heighttmp.append((int(col_anchor[k] * original_image_width), int(out_tmp)))coords.append(tmp)return coordsdef polyfit_draw(img, coords, degree=3, color=(144, 238, 144), thickness=2):"""对车道线坐标进行多项式拟合并在图像上绘制曲线。:param img: 输入图像:param coords: 车道线坐标列表:param degree: 拟合的多项式的度数:param color: 曲线的颜色:param thickness: 曲线的宽度:return: 绘制了曲线的图像"""if len(coords) == 0:return imgx = [point[0] for point in coords]y = [point[1] for point in coords]# 对点进行多项式拟合coefficients = np.polyfit(y, x, degree)poly = np.poly1d(coefficients)ys = np.linspace(min(y), max(y), 100)xs = poly(ys)for i in range(len(ys) - 1):start_point = (int(xs[i]), int(ys[i]))end_point = (int(xs[i+1]), int(ys[i+1]))cv2.line(img, start_point, end_point, color, thickness)return imgif __name__ == "__main__":torch.backends.cudnn.benchmark = Trueargs, cfg = merge_config()cfg.batch_size = 1print('setting batch_size to 1 for demo generation')dist_print('start testing...')assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide']if cfg.dataset == 'CULane':cls_num_per_lane = 18elif cfg.dataset == 'Tusimple':cls_num_per_lane = 56else:raise NotImplementedErrornet = get_model(cfg)state_dict = torch.load(cfg.test_model, map_location='cpu')['model']compatible_state_dict = {}for k, v in state_dict.items():if 'module.' in k:compatible_state_dict[k[7:]] = velse:compatible_state_dict[k] = vnet.load_state_dict(compatible_state_dict, strict=False)net.eval()img_transforms = transforms.Compose([transforms.Resize((int(cfg.train_height / cfg.crop_ratio), cfg.train_width)),transforms.ToTensor(),transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),])if cfg.dataset == 'CULane':splits = ['test0_normal.txt']datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, 'list/test_split/'+split),img_transform = img_transforms, crop_size = cfg.train_height) for split in splits]img_w, img_h = 1570, 660elif cfg.dataset == 'Tusimple':splits = ['test.txt']datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, split),img_transform = img_transforms, crop_size = cfg.train_height) for split in splits]img_w, img_h = 1280, 720else:raise NotImplementedErrorfor split, dataset in zip(splits, datasets):loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle = False, num_workers=1)fourcc = cv2.VideoWriter_fourcc(*'MJPG')print(split[:-3]+'avi')vout = cv2.VideoWriter('4.'+'avi', fourcc , 30.0, (img_w, img_h))for i, data in enumerate(tqdm.tqdm(loader)):imgs, names = dataimgs = imgs.cuda()with torch.no_grad():pred = net(imgs)vis = cv2.imread(os.path.join(cfg.data_root,names[0]))coords = pred2coords(pred, cfg.row_anchor, cfg.col_anchor, original_image_width = img_w, original_image_height = img_h)for lane in coords:
#                 for coord in lane:
#                     cv2.circle(vis,coord,1,(0,255,0),-1)
#             vis = draw_lanes(vis, coords)
#             polyfit_draw(vis, lane)vis = polyfit_draw(vis, lane)  # 对每一条车道线都使用polyfit_draw函数vout.write(vis)vout.release()

 ps:

优化前

优化后

显存利用情况

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/127413.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习-数值特征

离散值处理 import pandas as pd import numpy as npvg_df pd.read_csv(datasets/vgsales.csv, encoding "ISO-8859-1") vg_df[[Name, Platform, Year, Genre, Publisher]].iloc[1:7]NamePlatformYearGenrePublisher1Super Mario Bros.NES1985.0PlatformNintendo2…

Qt + FFmpeg 搭建 Windows 开发环境

Qt FFmpeg 搭建 Windows 开发环境 Qt FFmpeg 搭建 Windows 开发环境安装 Qt Creator下载 FFmpeg 编译包测试 Qt FFmpeg踩坑解决方法1:换一个 FFmpeg 库解决方法2:把项目改成 64 位 后记 官方博客:https://www.yafeilinux.com/ Qt开源社区…

通用监控视频web播放方案

业务场景 对接监控视频,实现海康大华等监控摄像头的实时画面在web端播放 方案一,使用 RTSP2webnode.jsffmpeg 说明:需要node环境,原理就是RTSP2web实时调用ffmpeg解码。使用单独html页面部署到服务器后,在项目中需要播…

小谈设计模式(9)—工厂方法模式

小谈设计模式(9)—工厂方法模式 专栏介绍专栏地址专栏介绍 工厂方法模式角色分类抽象产品(Abstract Product)具体产品(Concrete Product)抽象工厂(Abstract Factory)具体工厂&#x…

美股游戏股分析:微软收购游戏公司动视暴雪将迎来一个重要里程碑

来源:猛兽财经 作者:猛兽财经 总结: (1)微软(MSFT)收购动视暴雪(ATVI)的交易在做出重大让步后目前已经获得了欧盟和美国的监管批准。 (2)英国英国竞争和市场管理局(CMA)最初对微软收购动视暴雪…

java CPU 或者内存 异常排查

java CPU 或者内存 异常排查 提示:需要基础环境和配置上java-home CPU 或者内存 异常排查 java CPU 或者内存 异常排查前言一、java文件上传(Test.java)二、转换为class三、执行命令,启动文件四、使用top命令查看五、下载文件&…

Maven 下载安装配置

Maven 下载安装配置 下载 maven maven 官网:https://maven.apache.org/ maven 下载页面:https://maven.apache.org/download.cgi 安装 maven 将下载的apache-maven.zip文件解压到安装目录 将加压后的apache-maven目录改名为maven maven 配置环…

软件设计模式系列之二十五——访问者模式

访问者模式(Visitor Pattern)是一种强大的行为型设计模式,它允许你在不改变被访问对象的类的前提下,定义新的操作和行为。本文将详细介绍访问者模式,包括其定义、举例说明、结构、实现步骤、Java代码实现、典型应用场景…

Python-将常用库写入到一个Python程序里面,后续使用直接导入这个文件即可,就相当于导入了所有的库,就不用每次都写一堆的import了

sys.path.append(rD:\Backup\Documents) # 上方代码中的这一句 是我的常用库 所在的文件路径 当然,文件名建议写英文(比如:Common_use_lib.py), 不要写:常用库... 我这里只是演示使用,方便理…

【系统架构】软件架构的演化和维护

导读:本文整理关于软件架构的演化和维护知识体系。完整和扎实的系统架构知识体系是作为架构设计的理论支撑,基于大量项目实践经验基础上,不断加深理论体系的理解,从而能够创造新解决系统相关问题。 目录 1、软件架构演化和定义 …

iPhone手机通讯录怎么备份?掌握这两个备份技巧!

苹果手机通讯录是一个记录联系方式的工具,可以用来保存家人、朋友以及同事的电话号码、电子邮件等基本信息,以便于帮助我们更好地管理联系人。 有了通讯录,我们便可以快速查找到别人的联系方式,能够节省我们很多时间。那么&#…

【微信小程序开发】一文学会使用CSS样式布局与美化

引言 在微信小程序开发中,CSS样式布局和美化是非常重要的一部分,它能够为小程序增添美感,提升用户体验。本文将介绍如何学习使用CSS进行样式布局和美化,同时给出代码示例,帮助开发者更好地掌握这一技巧。 一、CSS样式布…