LLMs Python解释器程序辅助语言模型(PAL)Program-aided language models (PAL)

正如您在本课程早期看到的,LLM执行算术和其他数学运算的能力是有限的。虽然您可以尝试使用链式思维提示来克服这一问题,但它只能帮助您走得更远。即使模型正确地通过了问题的推理,对于较大的数字或复杂的运算,它仍可能在个别数学操作上出错。这是您早些时候看到的一个示例,其中LLM试图像计算器一样工作,但得到了错误的答案。
在这里插入图片描述

请记住,这个模型实际上没有进行任何真正的数学运算。它只是尝试预测完成提示的最有可能的标记。模型在数学上出错可能会对您的用例产生许多负面影响,具体取决于您的用例,例如向客户收取错误的总额或获取食谱中的测量值不正确。

您可以通过允许您的模型与擅长数学的外部应用程序(例如Python解释器)进行交互来克服这一限制。一种有趣的增强LLM的框架是称为“辅助编程语言模型Program-aided language models ”(PAL)的程序。这项工作首次由卡内基梅隆大学的Luyu Gao和合作者于2022年提出,将LLM与外部代码解释器配对以执行计算。该方法利用链式思维提示来生成可执行的Python脚本。模型生成的脚本将传递给解释器以执行。右侧的图像来自论文,显示了一些示例提示和完成。
在这里插入图片描述

您稍后将在示例中了解这些示例,所以现在不必担心阅读所有细节。

PAL背后的策略是使LLM生成包含计算机代码的推理步骤的完成。然后将此代码传递给解释器以执行解决问题所需的计算。您可以通过在提示中包含一些单个或少量推理的示例来指定模型的输出格式。

让我们更详细地看一下这些示例提示的结构。

您将继续使用Roger购买网球的故事作为单次示例。此设置现在应该看起来很熟悉。这是一个链式思维示例。
您可以在突出显示为蓝色的行上以文字形式看到推理步骤。
在这里插入图片描述

与您之前看到的提示不同之处在于,粉红色显示的Python代码行包含了将涉及计算的推理步骤转化为代码的行。
在这里插入图片描述

基于每个推理步骤中的文本声明变量。它们的值可以直接分配,就像这里的第一行代码一样,
在这里插入图片描述

或者使用推理文本中的数字进行计算,正如您在第二行Python代码中看到的那样。
在这里插入图片描述

模型还可以使用它在其他步骤中创建的变量,就像您在第三行中看到的那样。
在这里插入图片描述

请注意,每个推理步骤的文本以井号(#)开始,以便Python解释器可以将其跳过作为注释。
在这里插入图片描述

这个提示以要解决的新问题结束。在这种情况下,目标是确定一个面包店在一天的销售后和从一家杂货店合作伙伴那里退回一些面包后剩下多少面包。
在这里插入图片描述

在右侧,您可以看到LLM生成的完成。再次,链式思维的推理步骤显示为蓝色,Python代码显示为粉红色。正如您所看到的,模型创建了多个变量来跟踪烘焙的面包、一天中各个时间段销售的面包
在这里插入图片描述

以及杂货店退回的面包。

在这里插入图片描述

然后通过在这些变量上执行算术运算来计算答案。
在这里插入图片描述

模型正确地确定了应该添加或减去哪些术语以获得正确的总数。

现在您知道如何构建示例,以告诉LLM根据其推理步骤编写Python脚本,让我们来看看PAL框架如何使LLM能够与外部解释器进行交互。
在这里插入图片描述

  1. 为了准备使用PAL进行推理,您将格式化提示以包含一个或多个示例。
  2. 每个示例应包含一个问题,后面是解决问题的Python代码行的推理步骤。
  3. 接下来,您将附加您希望回答的新问题到提示模板中。
  4. 您生成的PAL格式提示现在包含示例和要解决的问题。
  5. 接下来,您将传递此组合提示给您的LLM,
  6. 然后LLM将生成一个以示例中的提示为基础的Python脚本形式的完成。
    现在,您可以将脚本交给Python解释器,用于运行代码并生成答案。

在这里插入图片描述

对于前一幻灯片上看到的面包店示例脚本,答案是74。您现在将附加包含答案的文本,因为您知道答案是正确的,因为计算是在PAL格式的提示中进行的。到此为止,您的提示包含了上下文中的正确答案。
在这里插入图片描述

现在,当您将更新后的提示传递给LLM时,它将生成包含正确答案的完成。鉴于面包店面包问题中的数学相对简单,模型可能已经使用链式思维提示正确地得出了答案。

但是对于更复杂的数学问题,包括大数的算术、三角学或微积分,PAL是一种强大的技术,允许您确保您的应用程序执行的任何计算都是准确可靠的。

您可能想知道如何自动化此过程,以便不必手动在LLM和解释器之间传递信息。这就是您之前看到的编排器的用处。
在这里插入图片描述

所示的编排器作为黄色框是一个技术组件,可以管理信息流和对外部数据源或应用程序的调用的启动。它还可以根据LLM输出中包含的信息来决定采取什么行动。
在这里插入图片描述

请记住,LLM是您的应用程序的推理引擎。最终,它会创建编排器将解释和执行的计划。

在PAL中,只有一个要执行的操作,即执行Python代码。LLM实际上不必决定运行代码,它只需要编写脚本,然后编排器将其传递给外部解释器以运行。
在这里插入图片描述

但是,大多数现实世界的应用程序可能会比简单的PAL架构复杂得多。
在这里插入图片描述

您的用例可能需要与多个外部数据源进行交互。正如您在商店示例中看到的,您可能需要处理多个决策点、验证操作和对外部应用程序的调用。您如何使用LLM来支持更复杂的应用程序?让我们在下一个视频中探讨一种策略。

Reference

https://www.coursera.org/learn/generative-ai-with-llms/lecture/6jh5Z/program-aided-language-models-pal

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/127809.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SketchyCOCO数据集进行前景图像、背景图像和全景图像的分类

SketchyCOCO数据集进行前景图像、背景图像和全景图像的分类 import os import shutildef CopyFile(src, dst, filename):if not os.path.exists(dst):os.makedirs(dst)print(create dir: dst)try:shutil.copy(src\\filename, dst\\filename)except Exception as e:print(cop…

Windows下Tensorflow docker python开发环境搭建

前置条件 windows10 更新到较新的版本,硬件支持Hyper-V。 参考:https://learn.microsoft.com/zh-cn/windows/wsl/install 启用WSL 在Powershell中输入如下指令: dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsys…

数据结构与算法(七)--使用链表实现栈

一、前言 之前我们已经学习了链表的所有操作及其时间复杂度分析,我们可以了解到对于链表头的相关操作基本都是O(1)的,例如链表头增加、删除元素,查询元素等等。那我们其实有一个数据结构其实可以完美利用到这些操作的特点,都是在…

十、pygame小游戏开发

目录 一、安装pygame二、pygame快速入门2.1 坐标系认识2.2 创建游戏主窗口2.3 实现图像绘制2.4 游戏循环和游戏时钟2.5 简单动画实现的实现2.6 监听事件2.7 精灵和精灵组三、游戏框架搭建3.1 实现飞机大战主游戏类3.2 完成游戏初始化部分3.3 使用常量代替固定的数值3.4 完成游戏…

漏洞挖掘--edusrc两连杀

免责声明:文章中涉及的漏洞均已修复,敏感信息均已做打码处理,文章仅做经验分享用途,切勿当真,未授权的攻击属于非法行为! 最近闲来无事,研究了下通达的day,由于本人太菜了&#xff…

Acwing.788 逆序对的数量

题目 给定一个长度为n的整数数列&#xff0c;请你计算数列中的逆序对的数量。 逆序对的定义如下:对于数列的第i个和第j个元素&#xff0c;如果满i<j且ali]>ali]&#xff0c;则其为一个逆序对;否则不是. 输入格式 第一行包含整数n&#xff0c;表示数列的长度。 第二行包…

2023-IDEA插件推荐

CamelCase 链接 https://plugins.jetbrains.com/plugin/7160-camelcase https://github.com/netnexus/camelcaseplugin 介绍 提供下划线、驼峰等代码风格的切换。快捷键是⇧ ⌥ U / Shift Alt U GsonFormatPlus 链接 https://plugins.jetbrains.com/plugin/14949-gs…

卷积层与池化层输出的尺寸的计算公式详解

用文字简单表述如下 卷积后尺寸计算公式&#xff1a; (图像尺寸-卷积核尺寸 2*填充值)/步长1 池化后尺寸计算公式&#xff1a; (图像尺寸-池化窗尺寸 2*填充值)/步长1 一、卷积中的相关函数的参数定义如下&#xff1a; in_channels(int) – 输入信号的通道 out_channels(int)…

简单走近ChatGPT

目录 一、ChatGPT整体背景认知 &#xff08;一&#xff09;ChatGPT引起关注的原因 &#xff08;二&#xff09;与其他公司的竞争情况 二、NLP学习范式的发展 &#xff08;一&#xff09;规则和机器学习时期 &#xff08;二&#xff09;基于神经网络的监督学习时期 &…

GraphQL全面深度讲解

目录 一、GraphQL 是什么 二、GraphQL 规范 数据模型 字段 参数 三、运行示例 四、优势和劣势 优势 劣势 一、GraphQL 是什么 GraphQL 是一种用于 API 的查询语言&#xff0c;也是一个基于服务端的运行引擎。 GraphQL 提供了一套完整的规范和描述用于查询 API&#xf…

【RabbitMQ 实战】09 客户端连接集群生产和消费消息

一、部署一个三节点集群 下面的链接是最快最简单的一种集群部署方法 3分钟部署一个RabbitMQ集群 上的的例子中&#xff0c;没有映射端口&#xff0c;所以没法从宿主机外部连接容器&#xff0c;下面的yml文件中&#xff0c;暴露了端口。 每个容器应用都映射了宿主机的端口&…

JVM内存管理

文章目录 一、JVM自动内存管理1、java运行时数据区1.1、程序计数器1.2、虚拟机栈1.3、本地方法栈1.4、java堆1.5、方法区1.6、直接内存 二、对象已死的判定算法三、垃圾收集算法1.标记-清除算法2.标记-复制算法3.标记-整理算法4.分代收集算法 四、垃圾收集器1.Serial收集器2.Pa…