分布式文件系统HDFS(林子雨慕课课程)

文章目录

    • 3. 分布式文件系统HDFS
      • 3.1 分布式文件系统HDFS简介
      • 3.2 HDFS相关概念
      • 3.3 HDFS的体系结构
      • 3.4 HDFS的存储原理
      • 3.5 HDFS数据读写
        • 3.5.1 HDFS的读数据过程
        • 3.5.2 HDFS的写数据过程
      • 3.6 HDFS编程实战

3. 分布式文件系统HDFS

3.1 分布式文件系统HDFS简介

  • HDFS就是解决海量数据的分布式存储问题
    image-20231007184204043

  • 为什么会出现分布式文件系统?

    image-20231007184422101

  • 计算机集群基本架构

    • 每个机架由若干个节点构成

    image-20231007185008914

  • 机架的内部之间是通过光纤交换机进行连接,机架与机架通过带宽更高的光纤交换机进行连接

    image-20231007185237064

  • 分布式文件系统的存储结构

    • 主节点存储相关的元数据服务:目录存储服务,从节点需要完成相关的数据存储任务

      image-20231007185455319

  • HDFS是非常流行的一个分布式存储系统

    image-20231007185555670

  • HDFS实现的目标

    • 兼容廉价的硬件设备
    • 实现流数据读写
    • 支持大数据集
    • 支持简单的文件模型
    • 强大的跨平台兼容性:基于JAVA语言开发,JAVA语言有着良好的跨平台特性
  • HDFS局限性

    • 不适合低延迟数据访问:不能满足实时的处理需求
    • 无法高效存储大量小文件:因为HDFS是通过元数据指引到客户端的哪个节点找文件,这些namenode会被保存到内存中去,到内存中检索索引数据结构,如果小文件太多,这个索引结构会过于庞大,在索引结构中搜索的效率会越来越低
    • 不支持多用户写入以及任意修改文件

3.2 HDFS相关概念

  • 块的概念

    • 块的大小比普通文件系统大很多,普通文件系统可能几字节,它可以达到64M或者128M

    image-20231007190438988

    • HDFS采用这种抽象的块的概念设计好处?为什么要这样设计块?
      • 为了支持面向大规模的数据存储:对大文件进行切割,可以分别存储在不同的数据节点,可以突破单机存储的上线
      • 简化系统设计:通过块设计方便元数据管理,块大小固定,可以很容易知道一个文件需要几个块进行存储
      • 适合数据备份:一个块可以冗余的存储到多个不同的节点上
      • 同时降低分布式节点的寻址开销:访问HDFS数据需要经过三级寻址:元数据目录–>数据节点–>取数据
    • 块是否是设置的越大越好?
      • 不是,如果块过大会导致MapReduce就一两个任务时,在执行完全牺牲了MapReduce的并行度,发挥不了分布式并行处理的效果
  • HDFS的两大组件

    • 名称节点(NameNode):整个HDFS集群的管家,假如客户端访问一个特别大的文件,通过NameNode可以知道这个大文件的每一个块被放置在哪个机器节点之上

    • 数据节点(DateNode):负责存储实际数据,将数据保存到本地的Linux文件系统中去

      image-20231007191635266

  • 元数据的作用?

    image-20231007191714382

  • 名称节点包含的两大结构:FsImage和EditLog

    image-20231007191912022

    • FsImage包含内容

      注意FsImage不保存块具体在数据节点的位置,这个在单独的内存区域维护的

      数据节点中加入新数据–>向名称节点汇报数据节点中包含哪些块–>名称节点构建清单:包含各个块的位置分布

      image-20231007192051935

  • HDFS要如何利用NameNode的数据结构

    • shell命令启动NameNode–>将FsImage从后台加载到内存中去,和EditLog中的内容进行合并(对数据结构的修改记录存储在EditLog中)–>得到最新元数据–>将新版FsImage保留,创建空的EditLog
    • EditLog永远保存的是更新操作(增量操作),然后再将EditLog合并到FsImage中去

image-20231007193050764

  • 但是若是不断的修改操作,会使得EditLog不断增加,影响整体使用的性能?怎么办?

  • 引入第二名称节点(SecondNameNode):

    • 作为名称节点的冷备份
    • 对EditLog的处理

    image-20231007193341520

    • 在第一名称节点的EditLog较大时,第二名称节点会告诉第一名称节点停止使用EditLog文件,并将EditLog写入自己机器

    image-20231007193415994

    • 1.此时NameNode会马上停止,此时生成edits.new,将新到达的更新写到edits.new中,将原来旧的editlog内容由secondNameNode取走

      image-20231007194717745

    • 2.SecondNameNode会通过http的get方式,将NameNode的FsImage和EditLog都下载到本地,然后在SecondNameNode做合并操作,得到新的FsImage,然后发送给NameNode

      image-20231007194939029

    • 3.NameNode再将Edits.new更改为EditLog:即实现了不断增加的Editlog和FsImage合并,又实现了冷备份效果

      image-20231007195126055

  • 数据节点:存储数据,数据节点拿到存储数据的文件目录,又将数据保留到各自的linux文件系统中去

    image-20231007195324803

3.3 HDFS的体系结构

  • 主节点:管家作用;从节点:数据存储作用

    image-20231007195605954

  • HDFS的命名空间

    • HDFS的目录访问和普通目录相同,都是通过/进行访问

      image-20231007195715117

    • 所有的HDFS基于TCP/IP的通信协议,不同组件之间的通信协议有差异:例如客户端向名称节点发起TCP连接,使用客户端协议和名称节点进行交互;客户端和数据节点进行交互是通过远程调用:RPC来进行实现的

      image-20231007200100150

  • HDFS体系结构的局限性:

    image-20231007200154491

    注意secondNamenode并不能保证集群的可用性:

    因为secondNameNode是冷备份,就是在故障发生时,必须停止一段时间,慢慢恢复,这个恢复的过程会导致整个集群的不可用

image-20231007200402623

  • 如何解决?HDFS2.0

    image-20231007200501421

3.4 HDFS的存储原理

  • 冗余数据保存问题

    • HDFS建立在廉价机器上,其缺点是会不停出故障,因此以块为单位,会将数据进行冗余保存,一般情况下一份数据会被保存为3份

      image-20231007200755388

    • 有何好处?

      • 加快数据传输速度:因为假设3个客户端ABC,需要访问同一个数据块,在冗余数据存储可以使三个客户端并行进行访问

        image-20231007200937628

      • 很容易检查数据错误:可以通过三个副本之间对照来检查数据是否有误

      • 保证数据可靠性:即使有机器down了,仍然能保有其他机器是可用的

  • 数据保存策略问题

    image-20231007201203030

    • 假设此时有一个块存入

      • 首先创建三个副本,假设块是由数据节点1发起的,这个副本称为第一副本,其则直接将其放在数据节点1上,不需要通过网络复制到其他节点上

      • 若是集群外部的某个节点发起了写数据请求,HDFS会随机挑选一个磁盘不太满,cpu不太忙的节点作为第一副本。

      • 第二副本会放置在和第一个副本不同的机架上

      • 第三副本放置在第一个副本相同机架的其他节点上

      • 若还有其他副本,则通过随机算法,放置在任意节点上

        image-20231007201828997

    • 数据读取问题:

      image-20231007202044890

  • 数据恢复的问题

    • 名称节点出错?

      • HDFS1.0:会将整个HDFS暂停一段时间,即从secondNameNode中进行冷备份恢复一段时间,再进行对外服务

      • HDFS2.0:不需要暂停,直接热备份

        image-20231007202350004

    • 数据节点出错?

      • 数据节点会隔一段时间向名称节点发送心跳信息,说明其还活着,若是名称节点收不到该数据节点的心跳信息,说明该数据节点发生故障

      • 名称节点会在该数据节点列表上将其标记为宕机,即不可用,把存储在这个节点上的数据重新分发到其他的机器上去

      • 当负载不均衡的时候,某个节点的负载过重,也会将这个节点的数据迁移到其他节点

        image-20231007202840257

    • 数据本身出错?

      • 客户端读取数据会对它进行校验码校验,如果发现校验码不正确,说明数据出错

      • 这个校验码是在客户端写入数据时,为数据块生成校验码,保存在同一个文件目录中去,下次读数据块时,会对读到的数据进行校验码计算,

        将计算的校验码和原来得到的校验码进行对比,不一致说明发生错误

        image-20231007203203892

3.5 HDFS数据读写

3.5.1 HDFS的读数据过程
  • HDFS的FileSystem的基类,会有很有子类继承它而实现不同的功能

  • FileSystem基本方法:open read close 。open创建输入流封装了DFSInputStream, 是专门针对 HDFS的实现;create方法创建了FSoutputstream,同样封装了DFSoutputstream

    image-20231007204448453

  • FileSystem.get(conf):获得工程目录下的两个配置文件 hdfs-site.xml 和core-site.xml

    image-20231007204701148
  • HDFS读数据的整个流程

    • 1.打开文件:用FileSystem声明文件对象,生成DistributedFileSystem的实例对象;创建输入流:FSDataInputStream,获取数据块信息,与名称节点通过远程过程调用进行沟通

      image-20231007205057155

    • 2.获取数据块信息:获取读取的数据块被保存在的数据节点位置信息,名称节点会把包含这个文件开始部分(文件可能包含很多块)的数据块位置信息返回

      image-20231007205234434

    • 3.客户端获得输入流,可以调用read函数读取数据,会根据数据节点距离客户端的远近进行排序,客户端拿到排序后的数据节点位置列表,选择距离客户端最近的数据节点建立连接,读数据

      image-20231007205643646

      1. 将数据从数据节点读取到客户端

      image-20231007205809929

    • 5.因为文件可能分为多个块,需要读取这个文件其他块的信息,通过ClientProtocal.getBlockLocations()查找下一数据块的位置

      image-20231007205935512

    • 6.然后又读取该块节点的数据,又关闭输入流;一直循环直到完成这个文件所有块的读取

      image-20231007210021115

    • 7.最后关闭文件

      image-20231007210205703

3.5.2 HDFS的写数据过程
  • 1.创建文件请求,实例化Distributed FileSystem;创建FSDataOutputStream,其内部封装DFSOutputStream,与名称节点打交道

    image-20231007210435519

    1. 输出流通过远程过程调用rpc,让名称节点在文件系统命名空间中新建一个文件,名称节点会检查文件是否存在,以及客户端是否有权限创建这个文件,若是通过,则该名称节点会创建这个文件

      image-20231007211004578

  • 3.写入数据

    将整个数据分包:并将其放入DFSOutputStream的内部队列中去,DFSOutputStream向名称节点申请保存这个数据包的数据节点

image-20231007211518227

    1. 写入数据包

      流水线复制:将数据包复制到第一个节点,再由第一个节点复制到第二个节点,形成流水线复制

      image-20231007211633020

  • 5.接受确认包

    • 确认包由最后一个数据节点传到前一个数据节点,一直往前传,客户端收到确认信息,说明全都写完

    image-20231007211957114

  • 6.最后关闭文件

    image-20231007211943223

3.6 HDFS编程实战

见:HDFS编程实践(Hadoop3.3.5)_厦大数据库实验室博客 (xmu.edu.cn)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/128289.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于springboot实现人职匹配推荐管理系统演示【项目源码+论文说明】分享

基于springboot实现人职匹配推荐管理系统演示 摘要 随着科学技术的飞速发展,各行各业都在努力与现代先进技术接轨,通过科技手段提高自身的优势;对于人职匹配推荐系统当然也不能排除在外,随着网络技术的不断成熟,带动了…

合宙Air780e+luatos+腾讯云物联网平台完成设备通信与控制(属性上报+4G远程点灯)

1.腾讯云物联网平台 首先需要在腾讯云物联网平台创建产品、创建设备、定义设备属性和行为,例如: (1)创建产品 (2)定义设备属性和行为 (3)创建设备 (4)准备参…

【Zookeeper专题】Zookeeper经典应用场景实战(一)

目录 前置知识课程内容一、Zookeeper Java客户端实战1.1 Zookeeper 原生Java客户端使用1.2 Curator开源客户端使用快速开始使用示例 二、Zookeeper在分布式命名服务中的实战2.1 分布式API目录2.2 分布式节点的命名2.3 分布式的ID生成器 三、zookeeper实现分布式队列3.1 设计思路…

MySQL命令行中文乱码问题

MySQL命令行中文乱码问题: 命令行界面默认字符集是gbk,若字符集不匹配会中文乱码或无法插入中文。 解决办法:执行set names gbk; 验证: 执行命令show variables like ‘char%’;查看默认字符集。 创建数据库设置字符集utf8&…

行车记录仪检测不到内存卡的原因

最近修了两个行车记录仪,相同的问题,都是提示插入内存卡(TF卡)。网上搜索资料,并没有明确的指出问题原因,有的是直接更换卡槽。 于是自己分析,首先内存卡电路属于小电流,而且电压并不…

使用 Bun 快速搭建一个 http 服务

前端运行时 Bun 1.0 正式发布,如今,Bun 已经稳定并且适用于生产环境。Bun 不仅是一个专注性能与开发者体验的全新 JavaScript 运行时,还是一个快速的、全能的工具包,可用于运行、构建、测试和调试 JavaScript 和 TypeScript 代码&…

1700*C. Number of Ways(贪心前缀和)

Problem - 466C - Codeforces Number of Ways - 洛谷 解析: 首先判断所有数总和是否能被三整除。 之后遍历前缀和数组,如果某个位置的前缀和等于sum/3,则记录。 某个位置前缀和等于sum/3*2则记录答案。 注意由于分成三份,所以同…

AWD训练赛QWQ

使用D盾啥都没扫到,河马倒是扫了挺多东西,但是代码审计能力太差,不怎么看得懂 一般这里我们如果扫到那种很明显的一句话木马,直接删掉,爆出对手IP后尝试利用 代码审计能力不好,只能从网站页面入手 是一个登…

Js基础——事件流

引入 当浏览器发展到第四代时( IE4 及 Netscape Communicator 4 ),浏览器开发团队遇到了一个很有意思 的问题:页面的哪一部分会拥有某个特定的事件?要明白这个问题问的是什么,可以想象画在一张纸上的一组…

一个非常简单的变分量子分类器 (VQC)

一、说明 在之前的帖子(这里和这里)中,我已经开始谈论 QML,为什么以及如何学习,从现在开始,我将开始分享我的研究和发现,到目前为止,这些都是非常基本的。 二、实验概述 今天&#…

【C++设计模式之命令模式:行为型】分析及示例

简介 命令模式是一种行为型设计模式,它将请求封装成一个对象,从而使不同的请求可以被参数化、队列化或记录化。这种模式允许请求的发送者和接收者进行解耦,同时提供更高的灵活性和可扩展性。 描述 命令模式的核心思想是通过命令对象来封装…

Mysql内置函数、复合查询和内外连笔记

目录 一、mysql内置函数 1.1.日期函数 1.2.字符串函数 1.3.数学函数 1.4.其他函数 二、复合查询 2.2 自连接 2.3 子查询 2.3.1单行自查询 2.3.2 多行子查询 2.3.3 多列子查询 2.3.4在from子句中使用子查询 2.3.5合并查询 三、表的内连和外连 3.1内连接 3.2外连接…