voc数据集格式与yolo数据集格式的区别及相互转化

Pascal VOC数据集是目标检测领域最常用的标准数据集之一,几乎所有检测方向的论文都会给出其在VOC数据集上训练并评测的效果。VOC数据集包含的信息非常全,它不仅被拿来做目标检测,也可以拿来做分割等任务,因此除了目标检测所需的文件之外,还包含分割任务所需的文件,比如 SegmentationClass, SegmentationObject等

下面我们来认识一下Pascal voc数据集的文件目录结构,Pascal VOC数据主要有2007和2012两年的数据,其中2007有train,val,test,而2012只有train和val

#第一级
VOCdevkit
├── VOC2007
└── VOC2012
#第二级
VOCdevkit/VOC2007
├── Annotations
├── ImageSets
├── JPEGImages
├── SegmentationClass
└── SegmentationObject

VOCdevkit/VOC2012
├── Annotations
├── ImageSets
├── JPEGImages
├── SegmentationClass
└── SegmentationObject
#以VOC2007为例,第三级
## Annotations
VOCdevkit/VOC2007/Annotations/
├── 000001.xml
├── 000002.xml
├── 000003.xml
├── 000004.xml
├── 000005.xml
├── 000006.xml
├── 000007.xml
├── 000008.xml
├── 000009.xml
├── 000010.xml
...
## JPEGImages
VOCdevkit/VOC2007/JPEGImages/
├── 000001.jpg
├── 000002.jpg
├── 000003.jpg
├── 000004.jpg
├── 000005.jpg
├── 000006.jpg
├── 000007.jpg
├── 000008.jpg
├── 000009.jpg
├── 000010.jpg
├── 000011.jpg
├── 000012.jpg
├── 000013.jpg

##ImageSets
VOCdevkit/VOC2007/ImageSets/
├── Layout
├── Main
└── Segmentation

#ImageSets第四级
VOCdevkit/VOC2007/ImageSets/
├── Layout
│   ├── test.txt
│   ├── train.txt
│   ├── trainval.txt
│   └── val.txt
├── Main
│   ├── aeroplane_test.txt
│   ├── aeroplane_train.txt
│   ├── aeroplane_trainval.txt
│   ├── aeroplane_val.txt
│   ├── bicycle_test.txt
│   ├── bicycle_train.txt
│   ├── bicycle_trainval.txt
│   ├── bicycle_val.txt
│   ├── bird_test.txt
│   ├── bird_train.txt
│   ├── bird_trainval.txt
│   ├── bird_val.txt
│   ├── boat_test.txt
│   ├── boat_train.txt
│   ├── boat_trainval.txt
│   ├── boat_val.txt
│   ├── bottle_test.txt
│   ├── bottle_train.txt
│   ├── bottle_trainval.txt
│   ├── bottle_val.txt
│   ├── bus_test.txt
│   ├── bus_train.txt
│   ├── bus_trainval.txt
│   ├── bus_val.txt
│   ├── car_test.txt
│   ├── car_train.txt
│   ├── car_trainval.txt
│   ├── car_val.txt
│   ├── cat_test.txt
│   ├── cat_train.txt
│   ├── cat_trainval.txt
│   ├── cat_val.txt
│   ├── chair_test.txt
│   ├── chair_train.txt
│   ├── chair_trainval.txt
│   ├── chair_val.txt
│   ├── cow_test.txt
│   ├── cow_train.txt
│   ├── cow_trainval.txt
│   ├── cow_val.txt
│   ├── diningtable_test.txt
│   ├── diningtable_train.txt
│   ├── diningtable_trainval.tx
│   ├── diningtable_val.txt
│   ├── dog_test.txt
│   ├── dog_train.txt
│   ├── dog_trainval.txt
│   ├── dog_val.txt
│   ├── horse_test.txt
│   ├── horse_train.txt
│   ├── horse_trainval.txt
│   ├── horse_val.txt
│   ├── motorbike_test.txt
│   ├── motorbike_train.txt
│   ├── motorbike_trainval.txt
│   ├── motorbike_val.txt
│   ├── person_test.txt
│   ├── person_train.txt
│   ├── person_trainval.txt
│   ├── person_val.txt
│   ├── pottedplant_test.txt
│   ├── pottedplant_train.txt
│   ├── pottedplant_trainval.tx
│   ├── pottedplant_val.txt
│   ├── sheep_test.txt
│   ├── sheep_train.txt
│   ├── sheep_trainval.txt
│   ├── sheep_val.txt
│   ├── sofa_test.txt
│   ├── sofa_train.txt
│   ├── sofa_trainval.txt
│   ├── sofa_val.txt
│   ├── test.txt
│   ├── train_test.txt
│   ├── train_train.txt
│   ├── train_trainval.txt
│   ├── train.txt
│   ├── train_val.txt
│   ├── trainval.txt
│   ├── tvmonitor_test.txt
│   ├── tvmonitor_train.txt
│   ├── tvmonitor_trainval.txt
│   ├── tvmonitor_val.txt
│   └── val.txt
└── Segmentation
    ├── test.txt
    ├── train.txt
    ├── trainval.txt
    └── val.txt
 

1.JPEGImages

这个文件夹中存放所有的图片,包括训练验证测试用到的所有图片。

2.ImageSets

这个文件夹中包含三个子文件夹,Layout、Main、Segmentation

  • Layout 文件夹中存放的是 train,valid,test 或者 train+valid 数据集的文件名
  • Segmentation文件夹中存放的是分割所用train,valid,test 或者 train+valid 数据集的文件名
  • Main 文件夹中存放的是各个类别所在图片的文件名,比如 cow_val,表示valid数据集中,包含有cow类别目标的图片名称。

3.Annotations

Annotation文件夹中存放着每张图片相关的标注信息,以xml格式的文件存储,标注文件中各个属性的含义,见下图。

红框区域内的内容是我们真正需要关注的,它包含。

  • filename:图片名称
  • size:图片宽高,
  • depth:表示图片通道数
  • object:表示目标,包含下面两部分内容。
    • 首先是目标的类别 name 为dog。pose表示目标姿势为left,truncated 表示是否是一个被截断的目标,1表示是,0表示不是,在这个例子中,只露出狗头部分,所以 truncated 为1。difficult 为 0 表示此目标不是一个难以识别的目标。
    • 然后是目标的 bbox 信息,可以看到,这里是以 [xmin,ymin,xmax,ymax] 格式进行标注的,分别表示dog目标的左上角和右下角坐标。xmin ,ymin ,xmax, ymax    bbox的坐标格式是box的左上角和右下角的坐标,坐标的方式是在第四象限,且x越往右越大,y越往下越大。

一张图片中有多少需要识别的目标,其 xml 文件中就有多少个 object。上面的例子中有两个object,分别对应人和狗。

yolo数据集的格式通常为:

class_id        x                y            w           h

下图为一张图片按照yolo格式进行标注的txt标注文件 

 voc与yolo数据集格式比较如下:

理解了voc格式的数据集以及yolo格式的数据集,那么将两者相互转化就容易多了。下面为voc转yolo格式的案例模板代码:

import xml.etree.ElementTree as ET
import osvoc_folder = r"E:\Download_Datasets\detection_reflect_clothes\Annotations" #储存voc格式的xml标注文件的文件夹
yolo_folder = r"E:\Download_Datasets\yolo_detection_reflect_clothes\labels" #转换后的yolo格式标注文件的储存文件夹class_id = ["person",'other_clothes','hat','reflective_clothes'] #储存数据集中目标种类名称的列表,接下来的转换函数中会将该列表中种类名称对应的列表索引号作为写入yolo标注文件中该类目标的种类序号#voc标注的目标框坐标值转换到yolo标注的目标框坐标值的函数
#按照上图复现计算过程
def convert(size, box):dw = 1. / size[0]dh = 1. / size[1]x = (box[0] + box[1]) / 2.0y = (box[2] + box[3]) / 2.0w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn (x, y, w, h)#对单个voc标注文件进行转换成其对应的yolo文件的函数
def convert_annotation(xml_file):file_name = xml_file.strip(".xml")  # 这一步将所有voc格式标注文件取出后缀名“.xml”,方便接下来作为yolo格式标注文件的名称in_file = open(os.path.join(voc_folder,xml_file)) #打开当前转换的voc标注文件out_file = open(os.path.join(yolo_folder,file_name + ".txt",),'w') #创建并打开要转换成的yolo格式标注文件tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):cls = obj.find('name').textcls_id = class_id.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text),float(xmlbox.find('xmax').text),float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')xml_fileList = os.listdir(voc_folder) #将所有voc格式的标注文件的名称取出存放到列表xml_fileList中
for xml_file in xml_fileList: #这里的for循环开始依次对所有voc格式标注文件生成其对应的yolo格式的标注文件convert_annotation(xml_file)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/128720.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kafka与zookeeper的集群

基础配置 systemctl stop firewalld && systemctl disable firewalld setenforce 0 sed -i s/SELINUXenforcing/SELINUXdisabled/ /etc/selinux/configvi /etc/hosts ip1 node1 ip2 node2 ip3 node3zookeeper介绍 zookeeper是一个分布式的协调服务,主要用…

【window10】Dart+Android Studio+Flutter安装及运行

安装Dart SDK安装Android Studio安装Flutter在Android Studio中创建并运行Flutter项目 安装前,请配置好你的jdk环境,准备好你的梯子~ 安装Dart SDK 浅浅了解一下Dart: Dart 诞生于2011年,是由谷歌开发的一种强类型、跨平台的客户…

【计算机视觉 05】YOLO论文讲解:V1-V7

https://ai.deepshare.net/live_pc/l_63243a65e4b050af23b79338 Part1.目标检测与YOLO系列 1. 目标检测任务及发展脉络 2. YOLO的发展史 Anchors Base原理: Part2.YOLOV1-V3 3. YOLO V1的网络结构 4. YOLO V3的网络结构与实验结果 Part3.YOLO的进化 5. YOLO V4的网络…

每个前端都要学的【前端自动化部署】,Devops,CI/CD

原文发布于:2023-09-21 11:50 作者:65岁退休Coder 原文链接:https://juejin.cn/post/7102360505313918983 DevOps 当我们提到 Jenkins,大家首先想到的概念就是 CI/CD,在这之前我们应该再了解一个概念。 DevOps&#…

轻松实现时间录入自由!如何在Microsoft Word中轻松插入格式化的日期和时间

在文档中插入当前日期和时间有几个原因。你可能希望将其插入信函或页眉或页脚中。无论是什么原因,Word都可以轻松地将日期和时间插入文档。 如果希望在打开或打印文档时自动更新日期和时间,可以将其作为自动更新的字段插入。该字段也可以随时手动更新。…

六个交易日市值蒸发20亿港元,第四范式难逃AI大模型“魔咒”

AI独角兽第四范式终于敲钟了。 北京第四范式智能技术股份有限公司(06682.HK,下称“第四范式”)于9月28日正式挂牌港交所,发行价为55.60港元/股,IPO首日报收58.50港元/股。 上市后6个交易日,截至10月6日港股收盘,第四…

一文读懂Base64

这几天在和第三方交互的时候,对方返回的数据是base64格式的数据,所以这两天又彻底捋了下Base64的来龙去脉。之前看过一篇文章说的非常好(再找到给加上链接),我在这不详细说明了,只说转换过程。 还是使用中…

Vue中如何进行分布式任务调度与定时任务管理

在Vue中进行分布式任务调度与定时任务管理 分布式任务调度和定时任务管理是许多应用程序中的关键功能之一。它们用于执行周期性的、异步的、重复的任务,例如数据备份、邮件发送、定时报告生成等。在Vue.js应用中,我们可以结合后端服务实现分布式任务调度…

C++(反向迭代器)

前言: 上一章我们介绍了适配器,也提了一下迭代器适配器,今天我们就从反向迭代器把迭代器适配器给解释一下。 既然 都叫迭代器容器了 就说名只要接口合适他可以封装实现各种容器需求包括vector list 。 目录 1.反向迭代器设计 1.1反向迭代…

【iOS】Fastlane一键打包上传到TestFlight、蒲公英

Fastlane一键打包上传到TestFlight、蒲公英 前言一、准备二、探索一、Fastlane配置1、Fastlane安装2、Fastlane更新3、Fastlane卸载4、查看Fastlane版本5、查看Fastlane位置6、Fastlane初始化 二、Fastlane安装蒲公英插件三、Fastlane文件编辑1、Gemfile文件2、Appfile文件3、F…

网络安全工程师自主学习计划表(具体到阶段目标,保姆级安排,就怕你学不会!)

前言 接下来我将给大家分享一份网络安全工程师自学计划指南,全文将从学习路线、学习规划、学习方法三个方向来讲述零基础小白如何通过自学进阶网络安全工程师,全文篇幅有点长,同学们可以先点个收藏,以免日后错过了。 目录 前言…

C++对象模型(4)-- 数据语义学:数据成员的内存布局

1、数据成员的声明顺序和内存布局 变量的布局顺序与它的声明顺序是一致的。 我们先来看一段代码&#xff1a; class Base { public:// 变量地址void print() {cout << " this:" << this << endl;cout << " &i1:" << …