Flink---11、状态管理(按键分区状态(值状态、列表状态、Map状态、归约状态、聚合状态)算子状态(列表状态、广播状态))

在这里插入图片描述
                       星光下的赶路人star的个人主页

                      这世上唯一扛得住岁月摧残的就是才华

文章目录

  • 1、状态管理
    • 1.1 Flink中的状态
      • 1.1.1 概述
      • 1.1.2 状态的分类
    • 1.2 按键分区状态(Keyed State)
      • 1.2.1 值状态(ValueState)
      • 1.2.2 列表状态(ListState)
      • 1.2.3 Map状态(MapState)
      • 1.2.4 归约状态(ReducingState)
      • 1.2.5 聚合状态(AggregatingState)
      • 1.2.6 状态生存时间(TTL)
    • 1.3 算子状态(Operator State)
      • 1.3.1 列表状态(ListState)
      • 1.3.2 联合列表状态
      • 1.3.3 广播状态(BroadCastState)

1、状态管理

1.1 Flink中的状态

1.1.1 概述

在这里插入图片描述

1.1.2 状态的分类

1、托管状态(Managed State)和原始状态(Raw State)
Flink的状态有两种:托管状态(Managed State)和原始状态(Raw State)。托管状态就是由Flink统一管理的,状态的存储访问、故障恢复和重组等一系列问题都由Flink实现,我们只要调接口就可以;而原始状态则是自定义的,相当于就是开辟了一块内存,需要我们自己管理,实现状态的序列化和故障恢复。
通常我们采用Flink托管状态来实现需求。
2、算子状态(Operator)和按键分区状态(Keyed State)
接下来我们的重点就是托管状态(Managed State)。
我们知道在Flink中,一个算子任务会按照并行度分为多个并行子任务执行,而不同的子任务会占据不同的任务槽(task slot)。由于不同的slot在计算资源上是物理隔离的,所以Flink能管理的状态在并行任务间是无法共享的,每个状态只能针对当前子任务的实例有效

而很多有状态的操作(比如聚合、窗口)都是要先做keyBy进行按键分区的。按键分区之后,任务所进行的所有计算都应该只针对当前key有效,所以状态也应该按照key彼此隔离。在这种情况下,状态的访问方式又会有所不同。

基于这样的想法,我们又可以将托管状态分为两类:算子状态和按键分区状态。
在这里插入图片描述
按键分区状态
在这里插入图片描述
另外,也可以通过富函数类(Rich Function)来自定义Keyed State,所以只要提供了富函数类接口的算子,也都可以使用Keyed State。所以即使是map、filter这样无状态的基本转换算子,我们也可以通过富函数类给它们“追加”Keyed State。比如RichMapFunction、RichFilterFunction。在富函数中,我们可以调用.getRuntimeContext()获取当前的运行时上下文(RuntimeContext),进而获取到访问状态的句柄;这种富函数中自定义的状态也是Keyed State。从这个角度讲,Flink中所有的算子都可以是有状态的。
无论是Keyed State还是Operator State,它们都是在本地实例上维护的,也就是说每个并行子任务维护着对应的状态,算子的子任务之间状态不共享。

1.2 按键分区状态(Keyed State)

按键分区状态(Keyed State)顾名思义,是任务按照键(key)来访问和维护的状态。它的特点非常鲜明,就是以key为作用范围进行隔离。
需要注意,使用Keyed State必须基于KeyedStream。没有进行keyBy分区的DataStream,即使转换算子实现了对应的富函数类,也不能通过运行时上下文访问Keyed Stat

1.2.1 值状态(ValueState)

顾名思义,状态中只保存一个“值”(value)。ValueState本身是一个接口,源码中定义如下:

public interface ValueState<T> extends State {T value() throws IOException;void update(T value) throws IOException;
}

这里的T是泛型,表示状态的数据内容可以是任何具体的数据类型。如果想要保存一个长整型值作为状态,那么类型就是ValueState。
我们可以在代码中读写值状态,实现对于状态的访问和更新。

  • T value():获取当前状态的值;
  • update(T value):对状态进行更新,传入的参数value就是要覆写的状态值。

在具体使用时,为了让运行时上下文清楚到底是哪个状态,我们还需要创建一个“状态描述器”(StateDescriptor)来提供状态的基本信息。例如源码中,ValueState的状态描述器构造方法如下:

public ValueStateDescriptor(String name, Class<T> typeClass) {super(name, typeClass, null);
}

这里需要传入状态的名称和类型——这跟我们声明一个变量时做的事情完全一样。

案例

*** keyedState在使用时,只需要先keyBy*      在后续的处理函数中,自带生命周期方法*      open():需要再Task启动时,从之前的备份中根据描述取出状态**      特点:每一个Task上,各种key各有各的State,互不干扰*      ------------------------------------------------*      ValueState储存单个值,可以是任意类型*      -------------------------------------------------*      检测每种传感器的水位值,如果连续的两个水位值超过10就输出报警*/
public class Demo01_ValueState {public static void main(String[] args) throws Exception {//创建Flink配置类(空参创建的话都是默认值)Configuration configuration = new Configuration();//修改配置类中的WebUI端口号configuration.setInteger("rest.port",3333);//创建Flink环境(并且传入配置对象)StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(configuration);env.socketTextStream("hadoop102",9999).map(new WaterSensorFunction()).keyBy(WaterSensor::getId).process(new KeyedProcessFunction<String, WaterSensor, String>() {private ValueState<Integer> state;@Overridepublic void open(Configuration parameters) throws Exception {//设置状态存储的描述器ValueStateDescriptor<Integer> stateDescriptor = new ValueStateDescriptor<>("state", Integer.class);//获取状态的存储state = getRuntimeContext().getState(stateDescriptor);}@Overridepublic void processElement(WaterSensor value, KeyedProcessFunction<String, WaterSensor, String>.Context ctx, Collector<String> out) throws Exception {//如果状态中从来没有存储过数据,此时lastVc是nullInteger lastVc = state.value();//连续两个水位值超过10,就输出报警if (lastVc!=null&&lastVc>10&&value.getVc()>10){out.collect(ctx.getCurrentKey()+"连续两个传感器的vc("+lastVc+","+value.getVc()+")超过10.....");}state.update(value.getVc());}}).print();env.execute();}
}

测试截图:

在这里插入图片描述

1.2.2 列表状态(ListState)

将需要保存的数据,以列表(List)的形式组织起来。在ListState接口中同样有一个类型参数T,表示列表中数据的类型。ListState也提供了一系列的方法来操作状态,使用方式与一般的List非常相似。

  • Iterable get():获取当前的列表状态,返回的是一个可迭代类型Iterable;
  • update(List values):传入一个列表values,直接对状态进行覆盖;
  • add(T value):在状态列表中添加一个元素value;
  • addAll(List values):向列表中添加多个元素,以列表values形式传入。

类似地,ListState的状态描述器就叫作ListStateDescriptor,用法跟ValueStateDescriptor完全一致。

/*** keyedState在使用时,只需要先keyBy*      在后续的处理函数中,自带生命周期方法*      open():需要再Task启动时,从之前的备份中根据描述取出状态**      特点:每一个Task上,各种key各有各的State,互不干扰*      ------------------------------------------------*      ListState储存多个类型相同的值,可以是任意类型*      -------------------------------------------------*      取水位最高的前三*/
public class Demo02_ListState {public static void main(String[] args) throws Exception {//创建Flink配置类(空参创建的话都是默认值)Configuration configuration = new Configuration();//修改配置类中的WebUI端口号configuration.setInteger("rest.port",3333);//创建Flink环境(并且传入配置对象)StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(configuration);env.socketTextStream("hadoop102",9999).map(new WaterSensorFunction()).keyBy(WaterSensor::getId).process(new KeyedProcessFunction<String, WaterSensor, String>() {private ListState<Integer> state;@Overridepublic void open(Configuration parameters) throws Exception {//设置状态存储的描述器ListStateDescriptor<Integer> listStateDescriptor = new ListStateDescriptor<>("state", Integer.class);//获取状态的存储state = getRuntimeContext().getListState(listStateDescriptor);}@Overridepublic void processElement(WaterSensor value, KeyedProcessFunction<String, WaterSensor, String>.Context ctx, Collector<String> out) throws Exception {state.add(value.getVc());List<Integer> top3 = StreamSupport.stream(state.get().spliterator(), true).sorted(Comparator.reverseOrder()).limit(3).collect(Collectors.toList());out.collect(ctx.getCurrentKey()+"最新Top水位:"+top3);state.update(top3);}}).print();env.execute();}public static class MyMapFunction implements MapFunction<String ,String>, CheckpointedFunction{//private List<String> strs = new ArrayList<>();/*把它当List集合用。添加元素:ListState.add()ListState.addAll()删除:  ListState.clear()修改:  ListState.update() 覆盖修改等价于 先清空,再写入读取:  ListState.get()*/private ListState<String> strs;private ListState<String> strs1;private ListState<String> strs2;@Overridepublic String map(String value) throws Exception {strs.add(value);return strs.get().toString();}//备份状态  周期性(ck设置的周期)执行。@Overridepublic void snapshotState(FunctionSnapshotContext context) throws Exception {System.out.println("MyMapFunction.snapshotState");}//Task重启后,做初始化。为声明的状态去赋值和恢复。 在Task启动时,只执行一次@Overridepublic void initializeState(FunctionInitializationContext context) throws Exception {System.out.println("MyMapFunction.initializeState");//找到之前OperatorState的备份OperatorStateStore operatorStateStore = context.getOperatorStateStore();//准备要取出的状态的描述ListStateDescriptor<String> strsListStateDescriptor = new ListStateDescriptor<>("list1", String.class);//从备份中找到指定的状态,取出strs = operatorStateStore.getListState(strsListStateDescriptor);}}
}

测试截图:
在这里插入图片描述

1.2.3 Map状态(MapState)

把一些键值对(key-value)作为状态整体保存起来,可以认为就是一组key-value映射的列表。对应的MapState<UK, UV>接口中,就会有UK、UV两个泛型,分别表示保存的key和value的类型。同样,MapState提供了操作映射状态的方法,与Map的使用非常类似。

  • UV get(UK key):传入一个key作为参数,查询对应的value值;
  • put(UK key, UV value):传入一个键值对,更新key对应的value值;
  • putAll(Map<UK, UV> map):将传入的映射map中所有的键值对,全部添加到映射状态中;
  • remove(UK key):将指定key对应的键值对删除;
  • boolean contains(UK key):判断是否存在指定的key,返回一个boolean值。另外,MapState也提供了获取整个映射相关信息的方法;
  • Iterable<Map.Entry<UK, UV>> entries():获取映射状态中所有的键值对;
  • Iterable keys():获取映射状态中所有的键(key),返回一个可迭代Iterable类型;
  • Iterable values():获取映射状态中所有的值(value),返回一个可迭代Iterable类型;
  • boolean isEmpty():判断映射是否为空,返回一个boolean值。

案例

/*** keyedState在使用时,只需要先keyBy*      在后续的处理函数中,自带生命周期方法*      open():需要再Task启动时,从之前的备份中根据描述取出状态**      特点:每一个Task上,各种key各有各的State,互不干扰*      ------------------------------------------------*      mapState储存多个值,可以是任意类型*      -------------------------------------------------*      统计每种传感器每种水位值出现的次数*/
public class Demo03_MapState {public static void main(String[] args) throws Exception {//创建Flink配置类(空参创建的话都是默认值)Configuration configuration = new Configuration();//修改配置类中的WebUI端口号configuration.setInteger("rest.port",3333);//创建Flink环境(并且传入配置对象)StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(configuration);env.socketTextStream("hadoop102",9999).map(new WaterSensorFunction()).keyBy(WaterSensor::getId).process(new KeyedProcessFunction<String, WaterSensor, String>() {private MapState<Integer,Integer> state;@Overridepublic void open(Configuration parameters) throws Exception {//设置状态存储的描述器MapStateDescriptor<Integer, Integer> mapStateDescriptor = new MapStateDescriptor<>("state", Integer.class, Integer.class);//获取状态的存储state = getRuntimeContext().getMapState(mapStateDescriptor);}@Overridepublic void processElement(WaterSensor value, KeyedProcessFunction<String, WaterSensor, String>.Context ctx, Collector<String> out) throws Exception {if (state.get(value.getVc())!=null){Integer nums = state.get(value.getVc());state.put(value.getVc(),nums+1);}else {state.put(value.getVc(),1);}out.collect(ctx.getCurrentKey()+":"+state.entries().toString());}}).print();env.execute();}
}

测试截图:
在这里插入图片描述

1.2.4 归约状态(ReducingState)

类似于值状态(Value),不过需要对添加进来的所有数据进行归约,将归约聚合之后的值作为状态保存下来。ReducingState这个接口调用的方法类似于ListState,只不过它保存的只是一个聚合值,所以调用.add()方法时,不是在状态列表里添加元素,而是直接把新数据和之前的状态进行归约,并用得到的结果更新状态。
归约逻辑的定义,是在归约状态描述器(ReducingStateDescriptor)中,通过传入一个归约函数(ReduceFunction)来实现的。这里的归约函数,就是我们之前介绍reduce聚合算子时讲到的ReduceFunction,所以状态类型跟输入的数据类型是一样的。

public ReducingStateDescriptor(String name, ReduceFunction<T> reduceFunction, Class<T> typeClass) {...}

这里的描述器有三个参数,其中第二个参数就是定义了归约聚合逻辑的ReduceFunction,另外两个参数则是状态的名称和类型。

/*** 带有聚合功能的状态,需要吧数据存入状态,可以自动根据逻辑聚合*      获取状态的值,就是聚合后的结果***      计算每个传感器的水位和**/
public class Demo04_ReduceState {public static void main(String[] args) throws Exception {//创建Flink配置类(空参创建的话都是默认值)Configuration configuration = new Configuration();//修改配置类中的WebUI端口号configuration.setInteger("rest.port",3333);//创建Flink环境(并且传入配置对象)StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(configuration);env.socketTextStream("hadoop102",9999).map(new WaterSensorFunction()).keyBy(WaterSensor::getId).process(new KeyedProcessFunction<String, WaterSensor, String>() {private ReducingState<Integer> state;@Overridepublic void open(Configuration parameters) throws Exception {//设置状态存储的描述器ReducingStateDescriptor stateDescriptor = new ReducingStateDescriptor<>("state",new ReduceFunction<Integer>() {@Overridepublic Integer reduce(Integer value1, Integer value2) throws Exception {return value1+value2;}},Integer.class);//获取状态的存储state = getRuntimeContext().getReducingState(stateDescriptor);}@Overridepublic void processElement(WaterSensor value, KeyedProcessFunction<String, WaterSensor, String>.Context ctx, Collector<String> out) throws Exception {state.add(value.getVc());out.collect(ctx.getCurrentKey()+":"+state.get());}}).print();env.execute();}
}

测试截图:
在这里插入图片描述

1.2.5 聚合状态(AggregatingState)

与归约状态非常类似,聚合状态也是一个值,用来保存添加进来的所有数据的聚合结果。与ReducingState不同的是,它的聚合逻辑是由在描述器中传入一个更加一般化的聚合函数(AggregateFunction)来定义的;这也就是之前我们讲过的AggregateFunction,里面通过一个累加器(Accumulator)来表示状态,所以聚合的状态类型可以跟添加进来的数据类型完全不同,使用更加灵活。
同样地,AggregatingState接口调用方法也与ReducingState相同,调用.add()方法添加元素时,会直接使用指定的AggregateFunction进行聚合并更新状态。

/*** 带有聚合功能的状态,需要吧数据存入状态,可以自动根据逻辑聚合*      获取状态的值,就是聚合后的结果***      计算每个传感器的水位平均值**/
public class Demo06_AggregatingState {public static void main(String[] args) throws Exception {//创建Flink配置类(空参创建的话都是默认值)Configuration configuration = new Configuration();//修改配置类中的WebUI端口号configuration.setInteger("rest.port",3333);//创建Flink环境(并且传入配置对象)StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(configuration);env.socketTextStream("hadoop102",9999).map(new WaterSensorFunction()).keyBy(WaterSensor::getId).process(new KeyedProcessFunction<String, WaterSensor, String>() {private AggregatingState<Integer, Double> state;@Overridepublic void open(Configuration parameters) throws Exception {//设置状态存储的描述器//获取状态的存储state = getRuntimeContext().getAggregatingState(new AggregatingStateDescriptor<>("state",new AggregateFunction<Integer, Tuple2<Integer, Double>, Double>(){@Overridepublic Tuple2<Integer, Double> createAccumulator() {return Tuple2.of(0, 0d);}@Overridepublic Tuple2<Integer, Double> add(Integer value, Tuple2<Integer, Double> accumulator) {accumulator.f0 += 1;accumulator.f1 += value;return accumulator;}@Overridepublic Double getResult(Tuple2<Integer, Double> accumulator) {return accumulator.f1 / accumulator.f0;}//不用写@Overridepublic Tuple2<Integer, Double> merge(Tuple2<Integer, Double> a, Tuple2<Integer, Double> b) {return null;}},Types.TUPLE(Types.INT, Types.DOUBLE)));}@Overridepublic void processElement(WaterSensor value, KeyedProcessFunction<String, WaterSensor, String>.Context ctx, Collector<String> out) throws Exception {state.add(value.getVc());//取出结果out.collect(ctx.getCurrentKey() +" avgVc:" +state.get());}}).print();env.execute();}
}

测试截图:
在这里插入图片描述

1.2.6 状态生存时间(TTL)

在实际应用中,很多状态会随着时间的推移逐渐增长,如果不加以限制,最终就会导致存储空间的耗尽。一个优化的思路是直接在代码中调用.clear()方法去清除状态,但是有时候我们的逻辑要求不能直接清除。这时就需要配置一个状态的“生存时间”(time-to-live,TTL),当状态在内存中存在的时间超出这个值时,就将它清除。
具体实现上,如果用一个进程不停地扫描所有状态看是否过期,显然会占用大量资源做无用功。状态的失效其实不需要立即删除,所以我们可以给状态附加一个属性,也就是状态的“失效时间”。状态创建的时候,设置 失效时间 = 当前时间 + TTL;之后如果有对状态的访问和修改,我们可以再对失效时间进行更新;当设置的清除条件被触发时(比如,状态被访问的时候,或者每隔一段时间扫描一次失效状态),就可以判断状态是否失效、从而进行清除了。
配置状态的TTL时,需要创建一个StateTtlConfig配置对象,然后调用状态描述器的.enableTimeToLive()方法启动TTL功能。

StateTtlConfig ttlConfig = StateTtlConfig.newBuilder(Time.seconds(10)).setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite).setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired).build();ValueStateDescriptor<String> stateDescriptor = new ValueStateDescriptor<>("my state", String.class);stateDescriptor.enableTimeToLive(ttlConfig);

这里用到了几个配置项:

  • .newBuilder()
    状态TTL配置的构造器方法,必须调用,返回一个Builder之后再调用.build()方法就可以得到StateTtlConfig了。方法需要传入一个Time作为参数,这就是设定的状态生存时间。
  • .setUpdateType()
    设置更新类型。更新类型指定了什么时候更新状态失效时间,这里的OnCreateAndWrite表示只有创建状态和更改状态(写操作)时更新失效时间。另一种类型OnReadAndWrite则表示无论读写操作都会更新失效时间,也就是只要对状态进行了访问,就表明它是活跃的,从而延长生存时间。这个配置默认为OnCreateAndWrite。
  • .setStateVisibility()
    设置状态的可见性。所谓的“状态可见性”,是指因为清除操作并不是实时的,所以当状态过期之后还有可能继续存在,这时如果对它进行访问,能否正常读取到就是一个问题了。这里设置的NeverReturnExpired是默认行为,表示从不返回过期值,也就是只要过期就认为它已经被清除了,应用不能继续读取;这在处理会话或者隐私数据时比较重要。对应的另一种配置是ReturnExpireDefNotCleanedUp,就是如果过期状态还存在,就返回它的值。
    除此之外,TTL配置还可以设置在保存检查点(checkpoint)时触发清除操作,或者配置增量的清理(incremental cleanup),还可以针对RocksDB状态后端使用压缩过滤器(compaction filter)进行后台清理。这里需要注意,目前的TTL设置只支持处理时间。
/*** 程序是7*24小时一直运行*  状态是储存在内存中。如果不动手清理(Clear()),状态会越存越多。*  内存是有限的,当状态过多时,需要把一些可以清理的状态,清理掉。*      实现方式:*          自己调用clear()*          自动清理(设置一个过期时间)*          ----------------------------------------------*          过期时间: ttl  time to live**          1、设置一个过期对象*          2、讲对象传入在open方法中的状态描述的方法中**/
public class Demo09_Ttl{public static void main(String[] args) throws Exception {//创建Flink配置类(空参创建的话都是默认值)Configuration configuration = new Configuration();//修改配置类中的WebUI端口号configuration.setInteger("rest.port",3333);//创建Flink环境(并且传入配置对象)StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(configuration);//并行度env.setParallelism(1);//构造状态的过期时间对象StateTtlConfig ttlConfig = StateTtlConfig//传入状态的存活时间.newBuilder(Time.seconds(15))//状态过期了就不返回了.neverReturnExpired()/*** 清理过期状态的原理:*     如果设置了ttl,此时每个状态在存储的时候,会多储存一个lastAccessTime字段** 设置状态中存活时间的更新策略。用来更新lastAccessTime*     OnCreateAndWrite:lastAccessTime会在状态被写的时候更新*     OnReadAndWrite:lastAccessTime会在状态被读或写的时候更新*  如何判断过期*     没有事件时间的概念,只和物理时钟有关**     当前读写时间-lastAccessTime>ttl,此时标记这个状态已经过期*     之后会在后台启动一个清理的线程,定期把标记为过期的状态删除*/.setUpdateType(StateTtlConfig.UpdateType.OnReadAndWrite).build();env.socketTextStream("hadoop102",9999).map(new WaterSensorFunction()).keyBy(WaterSensor::getId).process(new KeyedProcessFunction<String, WaterSensor, String>() {private ListState<Integer> listState;@Overridepublic void open(Configuration parameters) throws Exception {ListStateDescriptor<Integer> listStateDescriptor = new ListStateDescriptor<>("state", Integer.class);//应用存货策略listStateDescriptor.enableTimeToLive(ttlConfig);listState = getRuntimeContext().getListState(listStateDescriptor);}@Overridepublic void processElement(WaterSensor value, KeyedProcessFunction<String, WaterSensor, String>.Context ctx, Collector<String> out) throws Exception {listState.add(value.getVc());Iterable<Integer> integers = listState.get();List<Integer> top3 = StreamSupport.stream(integers.spliterator(), true).sorted(Comparator.reverseOrder()).limit(3).collect(Collectors.toList());out.collect(ctx.getCurrentKey()+"最新Top3:"+top3);listState.update(top3);}}).print();env.execute();}
}

测试截图:
在这里插入图片描述
注意:最后一条记录要在上一条记录发送之后15秒之后再发

1.3 算子状态(Operator State)

算子状态(Operator State)就是一个算子并行实例上定义的状态,作用范围被限定为当前算子任务。算子状态跟数据的key无关,所以不同key的数据只要被分发到同一个并行子任务,就会访问到同一个Operator State。
算子状态的实际应用场景不如Keyed State多,一般用在Source或Sink等与外部系统连接的算子上,或者完全没有key定义的场景。比如Flink的Kafka连接器中,就用到了算子状态。

当算子的并行度发生变化时,算子状态也支持在并行的算子任务实例之间做重组分配。根据状态的类型不同,重组分配的方案也会不同。

算子状态也支持不同的结构类型,主要有三种:ListState、UnionListState和BroadcastState。

1.3.1 列表状态(ListState)

与Keyed State中的ListState一样,将状态表示为一组数据的列表。

与Keyed State中的列表状态的区别是:在算子状态的上下文中,不会按键(key)分别处理状态,所以每一个并行子任务上只会保留一个“列表”(list),也就是当前并行子任务上所有状态项的集合。列表中的状态项就是可以重新分配的最细粒度,彼此之间完全独立。

当算子并行度进行缩放调整时,算子的列表状态中的所有元素项会被统一收集起来,相当于把多个分区的列表合并成了一个“大列表”,然后再均匀地分配给所有并行任务。这种“均匀分配”的具体方法就是“轮询”(round-robin),与之前介绍的rebanlance数据传输方式类似,是通过逐一“发牌”的方式将状态项平均分配的。这种方式也叫作“平均分割重组”(even-split redistribution)。

算子状态中不会存在“键组”(key group)这样的结构,所以为了方便重组分配,就把它直接定义成了“列表”(list)。这也就解释了,为什么算子状态中没有最简单的值状态(ValueState)。

案例实操:在map算子中计算数据的个数。

public class OperatorListStateDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);env.socketTextStream("hadoop102", 7777).map(new MyCountMapFunction()).print();env.execute();}// TODO 1.实现 CheckpointedFunction 接口public static class MyCountMapFunction implements MapFunction<String, Long>, CheckpointedFunction {private Long count = 0L;private ListState<Long> state;@Overridepublic Long map(String value) throws Exception {return ++count;}/*** TODO 2.本地变量持久化:将 本地变量 拷贝到 算子状态中,开启checkpoint时才会调用** @param context* @throws Exception*/@Overridepublic void snapshotState(FunctionSnapshotContext context) throws Exception {System.out.println("snapshotState...");// 2.1 清空算子状态state.clear();// 2.2 将 本地变量 添加到 算子状态 中state.add(count);}/*** TODO 3.初始化本地变量:程序启动和恢复时, 从状态中 把数据添加到 本地变量,每个子任务调用一次** @param context* @throws Exception*/@Overridepublic void initializeState(FunctionInitializationContext context) throws Exception {System.out.println("initializeState...");// 3.1 从 上下文 初始化 算子状态state = context.getOperatorStateStore().getListState(new ListStateDescriptor<Long>("state", Types.LONG));// 3.2 从 算子状态中 把数据 拷贝到 本地变量if (context.isRestored()) {for (Long c : state.get()) {count += c;}}}}
}

1.3.2 联合列表状态

与ListState类似,联合列表状态也会将状态表示为一个列表。它与常规列表状态的区别在于,算子并行度进行缩放调整时对于状态的分配方式不同。
UnionListState的重点就在于“联合”(union)。在并行度调整时,常规列表状态是轮询分配状态项,而联合列表状态的算子则会直接广播状态的完整列表。这样,并行度缩放之后的并行子任务就获取到了联合后完整的“大列表”,可以自行选择要使用的状态项和要丢弃的状态项。这种分配也叫作“联合重组”(union redistribution)。如果列表中状态项数量太多,为资源和效率考虑一般不建议使用联合重组的方式。
使用方式同ListState,区别在如下部分:

state = context.getOperatorStateStore().getUnionListState(new ListStateDescriptor<Long>("union-state", Types.LONG));

1.3.3 广播状态(BroadCastState)

有时我们希望算子并行子任务都保持同一份“全局”状态,用来做统一的配置和规则设定。这时所有分区的所有数据都会访问到同一个状态,状态就像被“广播”到所有分区一样,这种特殊的算子状态,就叫作广播状态(BroadcastState)。

因为广播状态在每个并行子任务上的实例都一样,所以在并行度调整的时候就比较简单,只要复制一份到新的并行任务就可以实现扩展;而对于并行度缩小的情况,可以将多余的并行子任务连同状态直接砍掉——因为状态都是复制出来的,并不会丢失。

/*** 场景单一:*      用于一个配置流在更新配置时,可以将更新的信息放入广播状态*      数据流,可以提供广播状态及时获取更新的配置信息*/
public class Demo04_BroadCastState {public static void main(String[] args) throws Exception {//创建Flink配置类(空参创建的话都是默认值)Configuration configuration = new Configuration();//修改配置类中的WebUI端口号configuration.setInteger("rest.port",3333);//创建Flink环境(并且传入配置对象)StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(configuration);env.setParallelism(2);env.enableCheckpointing(2000);//数据流SingleOutputStreamOperator<WaterSensor> dataDS = env.socketTextStream("hadoop102", 9999).map(new WaterSensorFunction());//配置流SingleOutputStreamOperator<MyConf> configDS = env.socketTextStream("hadoop102", 9998).map(new MapFunction<String, MyConf>() {@Overridepublic MyConf map(String value) throws Exception {String[] split = value.split(",");return new MyConf(split[0], split[1]);}});//只有把普通流制作为广播流,才能用广播状态MapStateDescriptor<String, MyConf> mapStateDescriptor = new MapStateDescriptor<>("config", String.class, MyConf.class);BroadcastStream<MyConf> confBroadcastStream = configDS.broadcast(mapStateDescriptor);//数据流希望读取配置流中的信息,必须让两个流连接dataDS.connect(confBroadcastStream).process(new BroadcastProcessFunction<WaterSensor, MyConf, WaterSensor>() {//处理数据流的数据@Overridepublic void processElement(WaterSensor value, BroadcastProcessFunction<WaterSensor, MyConf, WaterSensor>.ReadOnlyContext ctx, Collector<WaterSensor> out) throws Exception {//获取广播状态ReadOnlyBroadcastState<String, MyConf> broadcastState = ctx.getBroadcastState(mapStateDescriptor);MyConf myConf = broadcastState.get(value.getId());//用收到的配置信息,更新数据中的属性value.setId(myConf.getName());out.collect(value);}//处理配置流的数据@Overridepublic void processBroadcastElement(MyConf value, BroadcastProcessFunction<WaterSensor, MyConf, WaterSensor>.Context ctx, Collector<WaterSensor> out) throws Exception {//一旦收到了新的配置,就存入广播状态//当作map用BroadcastState<String, MyConf> broadcastState = ctx.getBroadcastState(mapStateDescriptor);broadcastState.put(value.id,value);}}).print();env.execute();}@Data@AllArgsConstructor@NoArgsConstructorpublic static class MyConf{private String id;private String name;}
}

测试截图:
在这里插入图片描述

在这里插入图片描述
                      您的支持是我创作的无限动力

在这里插入图片描述
                      希望我能为您的未来尽绵薄之力

在这里插入图片描述
                      如有错误,谢谢指正;若有收获,谢谢赞美

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/129439.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在Remix中编写你的第一份智能合约

智能合约简单来讲就是&#xff1a;部署在去中心化区块链上的一个合约或者一组指令&#xff0c;当这个合约或者这组指令被部署以后&#xff0c;它就不能被改变了&#xff0c;并会自动执行&#xff0c;每个人都可以看到合约里面的条款。更深层次的理解就是&#xff1a;这些代码会…

王道考研计算机组成原理——计算机硬件的基础知识

计算机组成原理的基本概念 计算机硬件的针脚都是用来传递信息&#xff0c;传递数据用的&#xff1a; 服务程序包含一些调试程序&#xff1a; 计算机硬件的基本组成 控制器通过电信号来协调其他部件的工作&#xff0c;同时负责解析存储器里存放的程序指令&#xff0c;然后指挥…

vue3 组件v-model绑定props里的值,修改组件的值要触发回调

很早之前就写了&#xff0c;一直没写篇博客记录下 <select v-model"typeVal" />const emit defineEmits([update:type]); const props defineProps({type: { type: String, default: }, });const typeVal computed({get() {return props.type;},set(value…

Vue-1.8生命周期

Vue生命周期 一个Vue实例从创建到销毁的整个过程。 生命周期&#xff1a; 1&#xff09;创建&#xff1a;响应式数据 ->发送初始化渲染请求 2&#xff09;挂载&#xff1a;渲染数据->操作dom 3&#xff09;更新&#xff1a;数据修改&#xff0c;更新视图 4&#xf…

基于SpringBoot的桂林旅游景点导游平台

目录 前言 一、技术栈 二、系统功能介绍 用户信息管理 景点类型管理 景点信息管理 线路推荐管理 用户注册 线路推荐 论坛交流 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实…

一篇短小精悍的文章让你彻底明白KMP算法中next数组的原理

以后保持每日一更&#xff0c;由于兴趣较多&#xff0c;更新内容不限于数据结构&#xff0c;计算机组成原理&#xff0c;数论&#xff0c;拓扑学......&#xff0c;所谓&#xff1a;深度围绕职业发展&#xff0c;广度围绕兴趣爱好。往下看今日内容 一.什么是KMP算法 KMP&#x…

SpringCloudGateway网关整合swagger3+Knife4j3,basePath丢失请求404问题

在集成 Spring Cloud Gateway 网关的时候&#xff0c;会出现没有 basePath 的情况&#xff0c;例如定义的 /jeeplus-auth、/jeeplus-system 等微服务前缀导致访问接口404&#xff1a; maven依赖&#xff1a; swagger2于17年停止维护&#xff0c;现在最新的版本为 Swagger3&am…

学习开发一个RISC-V上的操作系统(汪辰老师) — unrecognized opcode `csrr t0,mhartid‘报错问题

前言 &#xff08;1&#xff09;此系列文章是跟着汪辰老师的RISC-V课程所记录的学习笔记。 &#xff08;2&#xff09;该课程相关代码gitee链接&#xff1b; &#xff08;3&#xff09;PLCT实验室实习生长期招聘&#xff1a;招聘信息链接 正文 &#xff08;1&#xff09;在跟着…

ntlm哈希传递

哈希传递就是ntlm哈希 概念 早期SMB协议铭⽂在⽹络上传输数据&#xff0c;后来诞⽣了LM验证机制&#xff0c;LM机制由于过于简 单&#xff0c;微软提出了WindowsNT挑战/响应机制&#xff0c;这就是NTLM LM NTLM 哈希传递攻击是针对相同密码的用户认证直接发起攻击&#xff0c…

Opengl之立方体贴图

简单来说,立方体贴图就是一个包含了6个2D纹理的纹理,每个2D纹理都组成了立方体的一个面:一个有纹理的立方体。你可能会奇怪,这样一个立方体有什么用途呢?为什么要把6张纹理合并到一张纹理中,而不是直接使用6个单独的纹理呢?立方体贴图有一个非常有用的特性,它可以通过一…

macbook电脑磁盘满了怎么删东西?

macbook是苹果公司的一款高性能笔记本电脑&#xff0c;受到很多用户的喜爱。但是&#xff0c;如果macbook的磁盘空间不足&#xff0c;可能会导致一些问题&#xff0c;比如无法开机、运行缓慢、应用崩溃等。那么&#xff0c;macbook磁盘满了无法开机怎么办&#xff0c;macbook磁…

论文阅读--On optimization methods for deep learning

深度学习的优化方法研究 论文信息&#xff1a;Le Q V, Ngiam J, Coates A, et al. On optimization methods for deep learning[C]//Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011. …