35.树与二叉树练习(1)(王道第5章综合练习)

【所用的树,队列,栈的基本操作详见上一节代码】

试题1(王道5.3.3节第3题):

编写后序遍历二叉树的非递归算法。

参考:34.二叉链树的C语言实现_北京地铁1号线的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/qq_54708219/article/details/133581706

试题2(王道5.3.3节第4题):

给出二叉树自下而上,从右到左的层次遍历算法。

这道题很显然就是层次遍历算法调个个,加个栈即可实现:

//层次遍历(自下而上,从右到左)
void LevelOrder2(BiTree T){Queue q;InitQueue(q);Sqstack S;InitStack(S);BiTree p = T;InsertQueue(q, p);while(!IsQueueEmpty(q)){p = DeleteQueue(q, p);InsertSqstack(S, p);if(p->lchild!=NULL)InsertQueue(q, p->lchild);if(p->rchild!=NULL)InsertQueue(q, p->rchild);}while(S.top != -1){p = DeleteSqstack(S, p);printf("%c", p->data);}
}

输出:

输入二叉树的前序序列,#代表空子树:
ABD##E##C##
二叉树创建成功!
二叉树的层次遍历序列是:ABCDE
二叉树的层次遍历(自下而上,自右向左)序列是:EDCBA

试题3(王道5.3.3节第5题):

设计非递归算法求二叉树的高度。

此题采用层次遍历,附设一个指针a:

//利用层次遍历实现非递归计算树的深度
int LevelOrderDepth(BiTree T){int Depth = 0;if(!T)return Depth;else{Queue q;InitQueue(q);BiTree p = T;InsertQueue(q, p);Depth = 1;int a = q.rear;  //指针a指向队尾,也就是这一层最后一个元素while(!IsQueueEmpty(q)){if(q.front==a){  //这个时候说明这一层出完了,此时rear就是下一行的末尾结点a = q.rear;Depth = Depth + 1;}p = DeleteQueue(q, p);if(p->lchild!=NULL)InsertQueue(q, p->lchild);if(p->rchild!=NULL)InsertQueue(q, p->rchild);}return Depth;}
}

输出:

输入二叉树的前序序列,#代表空子树:
ABD##E##C##
二叉树创建成功!
二叉树的深度是(非递归算法):3

试题4(王道5.3.3节第6题):

设一棵二叉树中各结点的值互不相同,其先序遍历序列和中序遍历序列分别存放在两个数组A和B中,试编写算法建立该二叉树的二叉链表。

仍需要采用递归操作,这里要想办法根据前序序列找到根结点,然后在中序序列找根结点,从而确定哪些结点属于左子树,哪些结点属于右子树。

//由先序序列和中序序列建立二叉树
BiTree CreateBiTreeviaOrders(char a[],char b[],int x1,int y1,int x2,int y2){//x1,y1工作在前序序列中,x2,y2工作在中序序列中BiTree T;T = (BiTree)malloc(sizeof(BiTNode));T->data = a[x1];  //前序序列的第一个结点就是根结点int llen, rlen;for (int i = x2; i <= y2; i++){  //在中序序列找根结点if(b[i] == a[x1]){llen = i - x2;  //左子树的序列长度(结点个数)rlen = y2 - i;  //右子树的序列长度(结点个数)}}if (llen == 0)T->lchild = NULL;elseT->lchild = CreateBiTreeviaOrders(a, b, x1 + 1, x1 + llen, x2, x2 + llen - 1);if (rlen == 0)T->rchild = NULL;elseT->rchild = CreateBiTreeviaOrders(a, b, y1 - rlen + 1, y1, y2 - rlen + 1, y2);return T;
}int main(){BiTree T;char a[6] = {'A', 'B', 'C', 'D', 'E', 'F'};  //先序序列char b[6] = {'C', 'B', 'A', 'E', 'D', 'F'};  //中序序列T = CreateBiTreeviaOrders(a, b, 0, 5, 0, 5);  //初始必须是0和数组长度减一printf("该二叉树的后序遍历序列是:");PostOrderTraverse(T);  //输出后序序列进行验证return 0;
}

这里以王道5.3.3节单选15题进行验证,输出结果就是A选项。

该二叉树的后序遍历序列是:CBEFDA

试题5(王道5.3.3节第7题):

二叉树按二叉链表存储,写一个判别给定二叉树是否是完全二叉树的算法。

此题的思路是借助层次遍历和队列,当队列中输出空结点的时候,如果此时队列还有非空结点说明不是完全二叉树。注意这里输入和验证的都是扩展二叉树,所以去掉了层次遍历中的结点非空判断。

//判断是否是完全二叉树
bool IfCompleteTree(BiTree T){Queue q;InitQueue(q);BiTree p = T;if(!p)return true;InsertQueue(q, p);while(!IsQueueEmpty(q)){p = DeleteQueue(q, p);if(p!=NULL){InsertQueue(q, p->lchild);InsertQueue(q, p->rchild);}else{int a = q.front;while(a!=q.rear){if(q.data[a]!=NULL)return false;a = (a + 1) % MAXSIZE;}return true;}   }
}int main(){BiTree T;printf("输入二叉树的前序序列,#代表空子树:\n");CreateBiTree(T);printf("二叉树创建成功!\n");printf("该二叉树是否是完全二叉树?%d", IfCompleteTree(T));return 0;
}

输出:

输入二叉树的前序序列,#代表空子树:
ABD##E##C##
二叉树创建成功!
该二叉树是否是完全二叉树?1输入二叉树的前序序列,#代表空子树:
AB##CD##E##
二叉树创建成功!
该二叉树是否是完全二叉树?0

试题6(王道5.3.3节第8题):

设二叉树采用二叉链表存储结构,设计算法计算给定二叉树的双分支结点个数。

递归算法:

//判断是否是完全二叉树
int TwobranchNodes(BiTree T){if(T==NULL)return 0;else if(T->lchild!=NULL&&T->rchild!=NULL)return TwobranchNodes(T->lchild) + TwobranchNodes(T->rchild) + 1;elsereturn TwobranchNodes(T->lchild) + TwobranchNodes(T->rchild);
}

非递归算法(层次遍历逐个结点检查):

//判断是否是完全二叉树
int TwobranchNodes(BiTree T){int a = 0;Queue q;InitQueue(q);BiTree p = T;InsertQueue(q, p);while(!IsQueueEmpty(q)){p = DeleteQueue(q, p);if(p->lchild!=NULL && p->rchild!=NULL)a = a + 1;if(p->lchild!=NULL)InsertQueue(q, p->lchild);if(p->rchild!=NULL)InsertQueue(q, p->rchild);}return a;
}

试题7(王道5.3.3节第9题):

设树B是一棵采用链式结构存储的二叉树,编写一个把树B中所有结点的左右子树进行交换的函数。

此题同题6一样也可以用递归或层次遍历的方法,这里给出非递归的方法:

//把二叉树的左右子树交换
int ChangeTwobranch(BiTree &T){Queue q;InitQueue(q);BiTree p = T;BiTree r;InsertQueue(q, p);while(!IsQueueEmpty(q)){p = DeleteQueue(q, p);if(p->lchild!=NULL || p->rchild!=NULL){r = p->lchild;p->lchild = p->rchild;p->rchild = r;}if (p->lchild != NULL)InsertQueue(q, p->lchild);if(p->rchild!=NULL)InsertQueue(q, p->rchild);}return 0;
}

输出:

输入二叉树的前序序列,#代表空子树:
ABD##E##C##
二叉树创建成功!
该二叉树的层次遍历序列是:ACBED

试题8(王道5.3.3节第10题):

假设二叉树采用二叉链存储结构存储,设计算法求先序遍历序列中第k个结点的值。

这里使用一个计数器即可:

//输出前序遍历的第x个元素
void PreOrderx(BiTree T,int x){int a = 0;BiTree p = T; //p是遍历指针Sqstack S;InitStack(S);while(p != NULL|| !IsStackEmpty(S)){if(p){a = a + 1;if(a == x){printf("第%d个元素是:%c", x, p->data);break;}  InsertSqstack(S, p);p = p->lchild;}else{p = DeleteSqstack(S, p);p = p->rchild;}}
}

当然也可以采用递归,注意这里的计数器必须写在全局变量里,否则每次调用递归都会从零开始:

//输出前序遍历的第x个元素
int a = 0;  //计数器
void PreOrderx(BiTree T,int x){if (T!=NULL){a = a + 1;if(a==x)printf("前序遍历序列的第%d个元素是:%c", x, T->data);PreOrderx(T->lchild,x);PreOrderx(T->rchild,x);}
}int main(){BiTree T;printf("输入二叉树的前序序列,#代表空子树:\n");CreateBiTree(T);printf("二叉树创建成功!\n");PreOrderx(T, 3);return 0;
}

输出:

输入二叉树的前序序列,#代表空子树:
ABD##E##C##
二叉树创建成功!
前序遍历序列的第3个元素是:D

试题9(王道5.3.3节第11题):

已知二叉树以二叉链表存储,编写算法完成:对于树中的每个值为x的结点,删去以它为根的子树,并释放相应空间。

仍然是与层次遍历结合:

//这个函数用来删除树T
void Free(BiTree &T){if(T!=NULL){Free(T->lchild);Free(T->rchild);free(T);}
}//对值为x的结点,删除以它为根的子树
void Freex(BiTree &T,char x){Queue q;InitQueue(q);BiTree p = T;InsertQueue(q, p);while(!IsQueueEmpty(q)){p = DeleteQueue(q, p);if(p->data == x){Free(p->lchild);  //这样写保留了当前结点Free(p->rchild);p->lchild = NULL;p->rchild = NULL;}if(p->lchild!=NULL)InsertQueue(q, p->lchild);if(p->rchild!=NULL)InsertQueue(q, p->rchild);}
}int main(){BiTree T;printf("输入二叉树的前序序列,#代表空子树:\n");CreateBiTree(T);printf("二叉树创建成功!\n");printf("当前二叉树的层次遍历序列是:");LevelOrder(T);printf("\n");Freex(T, 'B');  //删除以B为根结点的树printf("当前二叉树的层次遍历序列是:");LevelOrder(T);printf("\n");return 0;
}

输出:

输入二叉树的前序序列,#代表空子树:
ABD##E##C##
二叉树创建成功!
当前二叉树的层次遍历序列是:ABCDE
当前二叉树的层次遍历序列是:ABC输入二叉树的前序序列,#代表空子树:
ABD###CE##F##
二叉树创建成功!
当前二叉树的层次遍历序列是:ABCDEF
当前二叉树的层次遍历序列是:ABCEF

试题10(王道数据结构5.3.3节第12题):

编写算法打印值为x的结点的所有祖先,假设值为x的结点不多于一个。

此题的算法十分典型:它用的是非递归后序遍历算法,这种算法需要借助栈来实现,当访问到值为x的结点的时候,栈中所有元素就是该结点的祖先,依次打印输出即可。有关非递归后序遍历算法的代码在上一节。

//寻找给定结点的所有祖先结点,采用后续遍历的非递归算法
void FindParents(BiTree T,char x){Sqstack S;InitStack(S);BiTree p = T;BiTree r = NULL;  //r用来记录访问结点的前一个结点while(p||!IsStackEmpty(S)){if(p){InsertSqstack(S, p);p = p->lchild;}else{p = S.data[S.top];  //读栈顶元素(但不出栈)if(p->rchild&&p->rchild!=r){p = p->rchild;}else{p = DeleteSqstack(S, p);if(p->data == x){printf("%c", p->data);break;}r = p;p = NULL;}}}while(!IsStackEmpty(S)){  //这个时候栈里的元素全部是结点的祖先p = DeleteSqstack(S, p);printf("%c", p->data);}
}int main(){BiTree T;printf("输入二叉树的前序序列,#代表空子树:\n");CreateBiTree(T);printf("二叉树创建成功!\n");printf("当前二叉树的层次遍历序列是:");LevelOrder(T);printf("\n");printf("当前二叉树中结点E的祖先结点是:");FindParents(T, 'E');return 0;
}

输出:

输入二叉树的前序序列,#代表空子树:
ABD##E##C##
二叉树创建成功!
当前二叉树的层次遍历序列是:ABCDE
当前二叉树中结点E的祖先结点是:EBA

试题11(王道数据结构5.3.3节第13题):

给出二叉链树中两个结点的指针p和q,试编写算法求解p和q的公共祖先结点r。

此题和上一题很像,分别求出p和q的祖先然后比较即可。

//寻找给定结点的所有祖先结点,采用后续遍历的非递归算法,和上一题不同的是,本题以栈的形式返回
Sqstack FindParents(BiTree T,char x){Sqstack S;InitStack(S);BiTree p = T;BiTree r = NULL;  //r用来记录访问结点的前一个结点while(p||!IsStackEmpty(S)){if(p){InsertSqstack(S, p);p = p->lchild;}else{p = S.data[S.top];  //读栈顶元素(但不出栈)if(p->rchild&&p->rchild!=r){p = p->rchild;}else{p = S.data[S.top];if(p->data == x){break;}p = DeleteSqstack(S, p);r = p;p = NULL;}}}return S;
}
//有了两个栈我们就可以遍历然后找到祖先结点了
//注意这里最差也能返回整棵二叉树的根结点,或者返回其中一个结点时,代表一个结点就是另一个结点的祖先
BiTree FindSameParents(BiTree T,char a,char b){Sqstack S1 = FindParents(T, a);Sqstack S2 = FindParents(T, b);int same = -1;  //same用来遍历两个栈,并指向最后一个相同的祖先结点while(S1.data[same+1] == S2.data[same+1]){same = same + 1;}printf("%c", S1.data[same]->data);return S1.data[same];
}int main(){BiTree T;printf("输入二叉树的前序序列,#代表空子树:\n");CreateBiTree(T);printf("二叉树创建成功!\n");printf("当前二叉树的层次遍历序列是:");LevelOrder(T);printf("\n");printf("当前二叉树中结点E,F的祖先结点是:");FindSameParents(T, 'E', 'F');  //求E,F的祖先结点return 0;
}

输出:

输入二叉树的前序序列,#代表空子树:
ABD###CE##F##
二叉树创建成功!
当前二叉树的层次遍历序列是:ABCDEF
当前二叉树中结点E,F的祖先结点是:C

试题12(王道数据结构5.3.3节第14题):

假设二叉树采用二叉链表存储,设计一个算法求非空二叉树的宽度(也就是结点数最多的那一层的结点个数)。

此题仍然可以利用层次遍历把每层的结点数输出,存在一个数组里面然后找出最大值:

//求非空二叉树的宽度,借助层次遍历把每层的结点数都求出来
int LevelOrderWidth(BiTree T){Queue q;InitQueue(q);BiTree p = T;InsertQueue(q, p);int a = q.front;  //a指针指向这一层的第一个结点int b = q.rear;  //b指针指向这一层的第一个结点int num = 1;     //输出这一层的结点个数int numarray[10];  //把各层的结点个数存在一个数组里int depth = 0;  //深度,实际深度是depth+1,因为numarray数组下标从0开始numarray[depth] = num;while(!IsQueueEmpty(q)){if(q.front == b){  //说明这一层出完了a = q.front;  //a指向下一层第一个结点b = q.rear;  //b指向下一层最后一个结点num = (b - a > 0) ? (b - a) : (b - a + MAXSIZE);  //循环队列三目运算符判断depth = depth + 1;numarray[depth] = num;}p = DeleteQueue(q, p);if(p->lchild!=NULL)InsertQueue(q, p->lchild);if(p->rchild!=NULL)InsertQueue(q, p->rchild);}//到此numarray存储了每层的结点数,接下来找其中的最大值输出num = 1;for (int i = 0; i <= depth;i++){printf("%d", numarray[i]);if(numarray[i] > num)num = numarray[i];}return num;
}int main(){BiTree T;printf("输入二叉树的前序序列,#代表空子树:\n");CreateBiTree(T);printf("二叉树创建成功!\n");printf("当前二叉树的层次遍历序列是:");LevelOrder(T);printf("\n");printf("各层的结点数是:");printf("二叉树的宽度是:%d",LevelOrderWidth(T));return 0;
}

输出:

输入二叉树的前序序列,#代表空子树:
ABDF##G##E##CH###
二叉树创建成功!
当前二叉树的层次遍历序列是:ABCDEHFG
各层的结点数是:1232二叉树的宽度是:3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/130398.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Tomcat 9.0.41在IDEA中乱码问题(IntelliJ IDEA 2022.1.3版本)

1. 乱码的产生是由于编码和解码的编码表不一致引起的。 2. 排查乱码原因 2.1 在idea中启动Tomcat时控制台乱码排查 Tomcat输出日志乱码: 首先查看IDEA控制台&#xff0c;检查发现默认编码是GBK。 再查看Tomcat日志&#xff08;conf文件下logging.properties&#xff09;的默…

【鼠标右键菜单添加用VSCode打开文件或文件夹】

鼠标右键菜单添加用VSCode打开文件或文件夹 演示效果如下&#xff1a; 右击文件 或右击文件夹 或在文件夹内空白处右击 方法一&#xff1a;重装软件 重装软件&#xff0c;安装时勾选如图所示方框&#xff08;如果登录的有账号保存有配置信息可以选择重装软件&#xff0c…

rustlings本地开发环境配置

克隆自己的仓库 首先我们要在github上找到自己仓库并把它克隆到本地 git clone https://github.com/LearningOS/rust-rustlings-2023-autumn-******.git下载插件 rust-analyzer和Git Graph一个可以用来解析rust代码&#xff0c;另一个可以可视化管理git代码库 下载rustling…

接口自动化测试方案模版。希望可以帮到你

XXX接口自动化测试方案 1、引言 1.1 文档版本 版本 作者 审批 备注 V1.0 XXXX 创建测试方案文档 1.2 项目情况 项目名称 XXX 项目版本 V1.0 项目经理 XX 测试人员 XXXXX&#xff0c;XXX 所属部门 XX 备注 1.3 文档目的 本文档主要用于指导XXX-Y…

STM32 PA15/JTDI 用作普通IO,烧录口不能使用问题解决

我们一般用SW调试接口 所以DEBUG选择Serial Wire 这样PA15可以用作普通IO使用。 工程中默认加上&#xff1a; PA13(JTMS/SWDIO).ModeSerial_Wire PA13(JTMS/SWDIO).SignalDEBUG_JTMS-SWDIO PA14(JTCK/SWCLK).ModeSerial_Wire PA14(JTCK/SWCLK).SignalDEBUG_JTCK-SWCLK

Springboot学生成绩管理系统idea开发mysql数据库web结构java编程计算机网页源码maven项目

一、源码特点 springboot 学生成绩管理系统是一套完善的信息系统&#xff0c;结合springboot框架和bootstrap完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用springboot框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统 具有完整的源代码和数据库&…

MAX30102心率血氧传感器

MAX30102心率血氧传感器介绍 背景基本功能基本结构基本原理采集方法直通式采集方法反射式采集方法 血氧采集原理Beer-Lambert 定理皮肤组织模型血氧测量过程AC / DC 的计算 心率采集原理 实验结果代码走读资源链接 背景 目前&#xff0c;基本上所有的可穿戴式设备都集成了心率…

【Spring Boot】SpringBoot 单元测试

SpringBoot 单元测试 一. 什么是单元测试二. 单元测试的好处三. Spring Boot 单元测试单元测试的实现步骤 一. 什么是单元测试 单元测试&#xff08;unit testing&#xff09;&#xff0c;是指对软件中的最⼩可测试单元进⾏检查和验证的过程就叫单元测试。 二. 单元测试的好处…

SonarQube学习笔记三:直接使用sonar-scanner扫描器

目录 1.安装Sanner扫描器2.环境变量配置3.创建项目3.1 登录并创建项目3.2 输入项目名称信息3.3 选择分析仓库类型3.4 创建令牌3.5 保存令牌&#xff08;非必须&#xff09;3.6 选择构建技术方案3.6.1 .Net类项目3.6.2 Java类项目 3.7 获取Sonar检查结果3.8 在页面查看检查结果或…

算法练习11——买卖股票的最佳时机 II

LeetCode 122 买卖股票的最佳时机 II 给你一个整数数组 prices &#xff0c;其中 prices[i] 表示某支股票第 i 天的价格。 在每一天&#xff0c;你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买&#xff0c;然后在 同一天 出售。 返回…

NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器

自然语言处理是机器学习和人工智能的一个迷人领域。这篇博客文章启动了一个具体的 NLP 项目&#xff0c;涉及使用维基百科文章进行聚类、分类和知识提取。灵感和一般方法源自《Applied Text Analysis with Python》一书。 一、说明 该文是系列文章&#xff0c;揭示如何对爬取文…

从0开始学go第六天

方法一&#xff1a;gin获取querystring参数 package main//querystring import ("net/http""github.com/gin-gonic/gin" )func main() {r : gin.Default()r.GET("/web", func(c *gin.Context) {//获取浏览器那边发请求携带的query String参数//…