目录
什么是数独?
数独的解法?
数独DFS算法详解
1. 初始化条件
2. 填入已初始化的数独表
3. 填数独
4. 拓展问题
请问删掉数独中的哪两个数可以使得数独的解最大?
删除的是哪两个数?
最终代码
main函数(如何执行这些代码)
什么是数独?
数独的要求是每一行,每一列,每一宫都包括1~9,但是不能有重复数字。
数独的解法?
主流为深度优先搜索算法,如果使用数据结构,有舞蹈链算法,本篇介绍深度优先搜索算法。
数独DFS算法详解
1. 初始化条件
我们的初始条件准备了5个,分别是row[N], col[N], cell[3][3],ones[M], map[M]。
N = 9;
M = 111111111(二进制),511(十进制);
//设置9*9数独表
const int N = 9;
//设置mask长度 M的二进制:111111111,从右到左分别表示1 2 3 4 5 6 7 8 9
const int M = 1 << N;//row、col、cell分别表示行、列、宫可填写数的编码
//ones、map是一个映射关系,ones表示有多少个1,map表示9位二进制的1代表的数字
int row[N], col[N], cell[3][3];
int ones[M], map[M];//数独表
int arr[9][9] = {4,0,0,9,0,0,0,0,3,0,8,0,0,0,1,0,9,0,0,0,0,0,2,0,7,0,0,0,3,0,0,0,0,0,0,4,0,0,6,7,0,0,5,0,0,2,0,0,0,0,0,0,6,0,0,0,7,0,3,0,6,0,0,0,5,0,6,0,0,0,0,0,1,0,0,0,0,9,0,0,2
};
那么M是用来干嘛的?
我使用了二进制来优化DFS算法,在下图中只有7不能填,因为mask为0。
map和ones是一个映射关系,下标(二进制)->值(十进制)
map[10] = 2,意思是二进制为10的数十进制为2
ones[11] = 2,意思是二进制为11的数十进制为2
下面初始化的意思是把所有位置都设置成所有数都可填的状态。
//只需一次初始化的数组map、ones
void _init()
{//once设置成false后不再执行这个函数once = false;//map和ones是一个映射关系,下标(二进制)->值(十进制)// //map[10] = 2,意思是二进制为10的数十进制为2for (int i = 0; i < N; i++){map[1 << i] = i + 1;}//ones[11] = 2,意思是二进制为11的数十进制为2for (int i = 0; i < M; i++){for (int j = 0; j < N; j++){ones[i] += i >> j & 1;}}
}//初始化条件数组
int init(int _arr[N][N])
{//设置row,col为111111111,代表1`9都在可填写状态for (int i = 0; i < N; i++){row[i] = col[i] = M - 1;}//在9个宫中设置值为111111111,代表1`9都在可填写状态for (int i = 0; i < 3; i++){for (int j = 0; j < 3; j++){cell[i][j] = M - 1;}}//只初始化一次if (once){_init();}//填入数独表的已知数字,完成初始化工作。return fill(_arr);
}
fill函数是干嘛的?请往下看
2. 填入已初始化的数独表
fill函数的作用是填入数独表中已知的数字,返回一个整形代表待填入数独表的空位。
我们利用空位作为DFS的制约条件。
//将数组上已知数的位置、值信息做初始化记录,并记录需要填写的格子数
int fill(int _arr[N][N])
{//cnt为待填格子数int cnt = 0;//设置cnt,row、col、cell条件for (int i = 0; i < N; i++){for (int j = 0; j < N; j++){if (!_arr[i][j]){cnt++;}else{col[j] -= 1 << (_arr[i][j] - 1);row[i] -= 1 << (_arr[i][j] - 1);cell[i / 3][j / 3] -= 1 << (_arr[i][j] - 1);}}}return cnt;
}
在行,列,宫对应的位置减去对应数的二进制码,这样可以把该数字在行、列、宫对应的二进制码设置为0,代表该数字在该行,该列,该宫已经不可以填写。
可举例填写4和6,三个条件的变化,等式右边为二进制码。
3. 填数独
前置有3个功能函数。
这里说一下getmask,
因为&的特点,col & row & cell运算,如果这三个其中一个的二进制码的某个位置上为0,那么返回的计算结果的那个位置的二进制码也为0。
draw是我们递归的灵魂,他的功能是在数组上填数,然后根据填的数修改row、col、cell。
//获得可填数的编码位(截断到最靠右的1) 例如10110 lowbit后得到10
inline int lowbit(int x)
{return x & -x;
}//获取可填数据 col,row,cell经过位运算可得到一串二进制数字,二进制的1代表可以填进数独的数字
int getmask(int x, int y)
{//printBinary(row[x]);//std::cout << " ";//printBinary(col[y]);//std::cout << " ";//printBinary(cell[x/3][y/3] );//std::cout << " ";//printBinary(col[y] & row[x] & cell[x / 3][y / 3]);return col[y] & row[x] & cell[x / 3][y / 3];
}//填数字
void draw(int _arr[9][9], int x, int y, int num, bool is_set)
{//如果这个位置已经被填过,那么消除这个位置上的数字//如果没有,就设置成numif (is_set){_arr[x][y] = 0;}else{_arr[x][y] = num;}//将数字num转化成二进制码int v = 1 << (num - 1);//根据这个位置是否有数字,修改 + - 的逻辑if (is_set){v = -v;}// -v 代表此位置行,列,宫的可填数num已经填入,该行,列,宫不可再填numrow[x] -= v;col[y] -= v;cell[x / 3][y / 3] -= v;
}
我们 按照标题2. 的逻辑对数独表和三个条件进行增、改,然后搜索。
t_ret表示解的数量。max_ret表示最大解。
位置优化:通过两层循环,找出可填数最少的位置。
//填数独
bool dfs(int _arr[9][9], int cnt, int& t_ret)
{//如果可填数为0,则代表已经完成数独if (!cnt){return true;}//找出最小可选位置,x、y表示坐标,minv代表可填数int minv = 10;int x, y;//每一个为0的位置都可以通过getmask(x,y)找到一个9位的二进制数,每一个位置上的1都代表对应数字可填for (int i = 0; i < N; i++){for (int j = 0; j < N; j++){//如果状态码state中的1比minv小,则记录下该位置的xy坐标,并记录下最小可填值minvif (!_arr[i][j]){int state = getmask(i, j);if (ones[state] < minv){minv = ones[state];x = i, y = j;//std::cout << std::endl;//printBinary(state);}}}}//拿到状态码int state = getmask(x, y);//lowbit取到可填数(从小到大),填了就从状态码中消除对应位置上的1for (int i = state; i; i -= lowbit(i)){//拿到二进制对应的十进制数字numint num = map[lowbit(i)];//填入numdraw(_arr, x, y, num, false);//开始填数,如果已经填完数独,则打印,并记录解的数量t_ret,最大解max_retif (dfs(_arr, cnt - 1, t_ret)){//print_arr(_arr);t_ret++;max_ret = t_ret > max_ret ? t_ret : max_ret;}//撤销填入的numdraw(_arr, x, y, num, true);}//如果 i = state 的值是0,那么就代表没有数字可以填的,返回失败,并消除上一位的数字return false;
}
4. 拓展问题
请问删掉数独中的哪两个数可以使得数独的解最大?
删除的是哪两个数?
函数的逻辑是删除两个数,然后进行DFS,再然后把删除的数填回去,继续删除。
DFS进行之前,我们都初始化row,col,cell三个条件,这样能保证正常递归。
这里我们使用vector和pair(C++),也就是数组和键值对的数据结构。
first代表x坐标,second代表y坐标。
//得到所有的数组,并记录下数独的最大解
int _getallarr(int tmp[9][9], int& time)
{//将每一个已知数字的x,y坐标记录到viistd::vector<std::pair<int, int>> vii;for (int i = 0; i < 9; i++){for (int j = 0; j < 9; j++){if (arr[i][j]){vii.push_back({ i,j });}}}//tmp1.tmp2存要删掉的两个数int tmp1, tmp2;//记录删除的数的坐标int max_ret_tmp = max_ret;//vpii的每一个元素都是一对坐标,我们只保留2对坐标std::vector<std::pair<int, int>> vpii;//依次删除两个数,为了保护源数独,把数据传入到tmp中for (int i = 0; i < vii.size(); i++){for (int j = i + 1; j < vii.size() - 1; j++){//存下要删掉的数,搜索完还原。tmp1 = tmp[vii[i].first][vii[i].second];tmp[vii[i].first][vii[i].second] = 0;tmp2 = tmp[vii[j].first][vii[j].second];tmp[vii[j].first][vii[j].second] = 0;//计算最大解int t_ret = 0;int cnt = init(tmp);dfs(tmp, cnt, t_ret);//如果最大解的数值发生变化,那么记录下该点的坐标。if (max_ret > max_ret_tmp){//此处还可做优化,比如说把2改成time,删time个数的最大解是哪三个?max_ret_tmp = max_ret;if (vpii.size() == 2){vpii.erase(vpii.begin(), vpii.end());}vpii.push_back(vii[i]);vpii.push_back(vii[j]);}//还原删除的数tmp[vii[i].first][vii[i].second] = tmp1;tmp[vii[j].first][vii[j].second] = tmp2;}}std::cout << "删除的坐标是:(" << vpii[0].first << vpii[0].second << ") && (" << vpii[1].first << vpii[1].second << ")" << std::endl;return max_ret;
}//计算最大解
int getMaxRet()
{//time为要删的数的个数int time = 2;//tmp为临时数组int tmp[9][9] = { 0 };copy_arr(tmp);//return _getallarr(tmp, time);
}
最终代码
//设置9*9数独表
const int N = 9;
//设置mask长度 M的二进制:111111111,从右到左分别表示1 2 3 4 5 6 7 8 9
const int M = 1 << N;//row、col、cell分别表示行、列、宫可填写数的编码
//ones、map是一个映射关系,ones表示有多少个1,map表示9位二进制的1代表的数字
//max_ret表示数独的最大解
//once 卡关,ones和map数组只需初始化一次
int row[N], col[N], cell[3][3];
int ones[M], map[M];
int max_ret;
bool once = true;//数独表
int arr[9][9] = {4,0,0,9,0,0,0,0,3,0,8,0,0,0,1,0,9,0,0,0,0,0,2,0,7,0,0,0,3,0,0,0,0,0,0,4,0,0,6,7,0,0,5,0,0,2,0,0,0,0,0,0,6,0,0,0,7,0,3,0,6,0,0,0,5,0,6,0,0,0,0,0,1,0,0,0,0,9,0,0,2
};//打印二进制格式(调试用)
void printBinary(int num)
{if (num == 0) {std::cout << "0";return;}int binary[32];int i = 0;while (num > 0) {binary[i] = num % 2;num /= 2;i++;}for (int j = i - 1; j >= 0; j--) {std::cout << binary[j];}
}//获得可填数的编码位(截断到最靠右的1) 例如10110 lowbit后得到10
inline int lowbit(int x)
{return x & -x;
}//打印数独表
void print_arr(int _arr[9][9])
{for (int i = 0; i < N; i++){for (int j = 0; j < N; j++){std::cout << _arr[i][j];}std::cout << std::endl;}std::cout << std::endl;
}//复制数独表到tmp
void copy_arr(int tmp[][9])
{for (int i = 0; i < N; i++){for (int j = 0; j < N; j++){tmp[i][j] = arr[i][j];}}std::cout << std::endl;
}//获取可填数据 col,row,cell经过位运算可得到一串二进制数字,二进制的1代表可以填进数独的数字
int getmask(int x, int y)
{//printBinary(row[x]);//std::cout << " ";//printBinary(col[y]);//std::cout << " ";//printBinary(cell[x/3][y/3] );//std::cout << " ";//printBinary(col[y] & row[x] & cell[x / 3][y / 3]);return col[y] & row[x] & cell[x / 3][y / 3];
}//填数字
void draw(int _arr[9][9], int x, int y, int num, bool is_set)
{//如果这个位置已经被填过,那么消除这个位置上的数字//如果没有,就设置成numif (is_set){_arr[x][y] = 0;}else{_arr[x][y] = num;}//将数字num转化成二进制码int v = 1 << (num - 1);//根据这个位置是否有数字,修改 + - 的逻辑if (is_set){v = -v;}// -v 代表此位置行,列,宫的可填数num已经填入,该行,列,宫不可再填numrow[x] -= v;col[y] -= v;cell[x / 3][y / 3] -= v;
}//将数组上已知数的位置、值信息做初始化记录,并记录需要填写的格子数
int fill(int _arr[N][N])
{//cnt为待填格子数int cnt = 0;//设置cnt,row、col、cell条件for (int i = 0; i < N; i++){for (int j = 0; j < N; j++){if (!_arr[i][j]){cnt++;}else{col[j] -= 1 << (_arr[i][j] - 1);row[i] -= 1 << (_arr[i][j] - 1);cell[i / 3][j / 3] -= 1 << (_arr[i][j] - 1);}}}return cnt;
}//只需一次初始化的数组map、ones
void _init()
{//once设置成false后不再执行这个函数once = false;//map和ones是一个映射关系,下标(二进制)->值(十进制)// //map[10] = 2,意思是二进制为10的数十进制为2for (int i = 0; i < N; i++){map[1 << i] = i + 1;}//ones[11] = 2,意思是二进制为11的数十进制为2for (int i = 0; i < M; i++){for (int j = 0; j < N; j++){ones[i] += i >> j & 1;}}
}//初始化条件数组
int init(int _arr[N][N])
{//设置row,col为111111111,代表1`9都在可填写状态for (int i = 0; i < N; i++){row[i] = col[i] = M - 1;}//在9个宫中设置值为111111111,代表1`9都在可填写状态for (int i = 0; i < 3; i++){for (int j = 0; j < 3; j++){cell[i][j] = M - 1;}}//只初始化一次if (once){_init();}//填入数独表的已知数字,完成初始化工作。return fill(_arr);
}//填数独
bool dfs(int _arr[9][9], int cnt, int& t_ret)
{//如果可填数为0,则代表已经完成数独if (!cnt){return true;}//找出最小可选位置,x、y表示坐标,minv代表可填数int minv = 10;int x, y;//每一个为0的位置都可以通过getmask(x,y)找到一个9位的二进制数,每一个位置上的1都代表对应数字可填for (int i = 0; i < N; i++){for (int j = 0; j < N; j++){//如果状态码state中的1比minv小,则记录下该位置的xy坐标,并记录下最小可填值minvif (!_arr[i][j]){int state = getmask(i, j);if (ones[state] < minv){minv = ones[state];x = i, y = j;//std::cout << std::endl;//printBinary(state);}}}}//拿到状态码int state = getmask(x, y);//lowbit取到可填数(从小到大),填了就从状态码中消除对应位置上的1for (int i = state; i; i -= lowbit(i)){//拿到二进制对应的十进制数字numint num = map[lowbit(i)];//填入numdraw(_arr, x, y, num, false);//开始填数,如果已经填完数独,则打印,并记录解的数量t_ret,最大解max_retif (dfs(_arr, cnt - 1, t_ret)){//print_arr(_arr);t_ret++;max_ret = t_ret > max_ret ? t_ret : max_ret;}//撤销填入的numdraw(_arr, x, y, num, true);}//如果 i = state 的值是0,那么就代表没有数字可以填的,返回失败,并消除上一位的数字return false;
}//得到所有的数组,并记录下数独的最大解
int _getallarr(int tmp[9][9], int& time)
{//将每一个已知数字的x,y坐标记录到viistd::vector<std::pair<int, int>> vii;for (int i = 0; i < 9; i++){for (int j = 0; j < 9; j++){if (arr[i][j]){vii.push_back({ i,j });}}}//tmp1.tmp2存要删掉的两个数int tmp1, tmp2;//记录删除的数的坐标int max_ret_tmp = max_ret;std::vector<std::pair<int, int>> vpii;//依次删除两个数,为了保护源数独,把数据传入到tmp中for (int i = 0; i < vii.size(); i++){for (int j = i + 1; j < vii.size() - 1; j++){tmp1 = tmp[vii[i].first][vii[i].second];tmp[vii[i].first][vii[i].second] = 0;tmp2 = tmp[vii[j].first][vii[j].second];tmp[vii[j].first][vii[j].second] = 0;//计算最大解int t_ret = 0;int cnt = init(tmp);dfs(tmp, cnt, t_ret);if (max_ret > max_ret_tmp){max_ret_tmp = max_ret;if (vpii.size() == 2){vpii.erase(vpii.begin(), vpii.end());}vpii.push_back(vii[i]);vpii.push_back(vii[j]);}//还原删除的数tmp[vii[i].first][vii[i].second] = tmp1;tmp[vii[j].first][vii[j].second] = tmp2;}}std::cout << "删除的坐标是:(" << vpii[0].first << vpii[0].second << ") && (" << vpii[1].first << vpii[1].second << ")" << std::endl;return max_ret;
}//计算最大解
int getMaxRet()
{//time为要删的数的个数int time = 2;//tmp为临时数组int tmp[9][9] = { 0 };copy_arr(tmp);//return _getallarr(tmp, time);
}
main函数(如何执行这些代码)
int main()
{int t_ret = 0;int cnt = init(arr);dfs(arr,cnt, t_ret);std::cout << max_ret;std::cout << getMaxRet();return 0;
}
觉得写的不错的话给个三连加关注吧~