rabbitmq-----黑马资料

rabbit的三种发送订阅模式

消息从发送,到消费者接收,会经理多个过程:

在这里插入图片描述

其中的每一步都可能导致消息丢失,常见的丢失原因包括:

  • 发送时丢失:
  • 生产者发送的消息未送达exchange
  • 消息到达exchange后未到达queue
  • MQ宕机,queue将消息丢失
  • consumer接收到消息后未消费就宕机

针对这些问题,RabbitMQ分别给出了解决方案。也就是面试题常问的如何rabbitmq如何保证消息的可靠性?

  1. 生产者确认机制:两种回调函数
  2. mq持久化
  3. 消费者确认机制
  4. 失败重试机制

生产者确认机制(解决生产者->交换机->队列)

步骤
1.修改生产者配置

spring:rabbitmq:publisher-confirm-type: correlated publisher-returns: truetemplate:mandatory: true
  • publish-confirm-type:开启publisher-confirm,这里支持两种类型:
  • simple:同步等待confirm结果,直到超时
  • correlated:异步回调,定义ConfirmCallback,MQ返回结果时会回调这个ConfirmCallback
  • publish-returns:开启publish-return功能,同样是基于callback机制,不过是定义ReturnCallback
  • template.mandatory:定义消息路由失败时的策略。true,则调用ReturnCallback;false:则直接丢弃消息

2.定义回调函数(每个RabbitTemplate只能配置一个ReturnCallback)
消息从交换机到队列的过程不通就会回调这个函数

import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.context.annotation.Configuration;@Slf4j
@Configuration
public class CommonConfig implements ApplicationContextAware {@Overridepublic void setApplicationContext(ApplicationContext applicationContext) throws BeansException {// 获取RabbitTemplateRabbitTemplate rabbitTemplate = applicationContext.getBean(RabbitTemplate.class);// 设置ReturnCallbackrabbitTemplate.setReturnCallback((message, replyCode, replyText, exchange, routingKey) -> {// 投递失败,记录日志log.info("消息发送失败,应答码{},原因{},交换机{},路由键{},消息{}",replyCode, replyText, exchange, routingKey, message.toString());// 如果有业务需要,可以重发消息});}
}

3.定义ConfirmCallback 消息每次发送前都要写

public void testSendMessage2SimpleQueue() throws InterruptedException {// 1.消息体String message = "hello, spring amqp!";// 2.全局唯一的消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 3.添加callbackcorrelationData.getFuture().addCallback(result -> {if(result.isAck()){// 3.1.ack,消息成功log.debug("消息发送成功, ID:{}", correlationData.getId());}else{// 3.2.nack,消息失败log.error("消息发送失败, ID:{}, 原因{}",correlationData.getId(), result.getReason());}},ex -> log.error("消息发送异常, ID:{}, 原因{}",correlationData.getId(),ex.getMessage()));// 4.发送消息rabbitTemplate.convertAndSend("task.direct", "task", message, correlationData);// 休眠一会儿,等待ack回执Thread.sleep(2000);
}

mq持久化

  • 交换机持久化

  • 队列持久化

  • 消息持久化
    RabbitMQ中交换机默认是非持久化的,mq重启后就丢失。

  • 交换机持久化

@Bean
public DirectExchange simpleExchange(){// 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除return new DirectExchange("simple.direct", true, false);
}
  • 队列持久化
@Bean
public Queue simpleQueue(){// 使用QueueBuilder构建队列,durable就是持久化的return QueueBuilder.durable("simple.queue").build();
}

消息持久化
发送时,可以设置消息的属性(MessageProperties),指定delivery-mode:

消费者确认机制

直接配置即可

spring:rabbitmq:listener:simple:acknowledge-mode: manual # 关闭ac
  • none模式下,消息投递是不可靠的,可能丢失
  • auto模式类似事务机制,出现异常时返回nack,消息回滚到mq;没有异常,返回ack
  • manual:自己根据业务情况,判断什么时候该ack

一般,我们都是使用默认的auto即可。

手动ack

    @RabbitListener(queues = "fanout.queue1")
public void onMessage(Message message, Channel channel) throws Exception {try {// 处理消息processMessage(message);// 手动确认消息已经被处理完成channel.basicAck(message.getMessageProperties().getDeliveryTag(), false);} catch (Exception e) {// 发生异常时可以选择拒绝消息,重新放回队列或者进入死信队列等channel.basicNack(message.getMessageProperties().getDeliveryTag(), false, true);}
}

失败重试机制

1.生产者发送消息失败配置
默认是消息重新回到队列,但是如果一直失败,就会一直循环的失败回到队列再重试,频率太高太消耗资源了

可以本地重试也就是重写发送消息

spring:rabbitmq:listener:simple:retry:enabled: true # 开启消费者失败重试initial-interval: 1000 # 初识的失败等待时长为1秒multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-intervalmax-attempts: 3 # 最大重试次数stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false

经典面试题:如何保证消息不会重复消费呢?
1.消费端手动ACK确认机制
在消费端使用RabbitMQ提供的手动ACK确认机制,在消费者成功处理消息后,手动将消息从队列中删除。这样可以确保消息只会被处理一次,避免了重复消费的问题。
2.消费端去重保证机制
可以在消费端处理每条消息之前,通过分布式锁或者数据库唯一索引等方式,判断当前消息是否已经被处理过。如果已经处理过,则忽略该消息;否则正常处理,并将消息标记为已处理。

死信队列

当一个队列中的消息满足下列情况之一时,可以成为死信(dead letter):

  • 消费者使用basic.reject或 basic.nack声明消费失败,并且消息的requeue参数设置为false
  • 消息是一个过期消息,超时无人消费
  • 要投递的队列消息满了,无法投递

如果这个包含死信的队列配置了dead-letter-exchange属性,指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机称为死信交换机(Dead Letter Exchange,检查DLX)。

另外,队列将死信投递给死信交换机时,必须知道两个信息:

  • 死信交换机名称
  • 死信交换机与死信队列绑定的RoutingKey

这样才能确保投递的消息能到达死信交换机,并且正确的路由到死信队列。

在这里插入图片描述

// 声明普通的 simple.queue队列,并且为其指定死信交换机:dl.direct
@Bean
public Queue simpleQueue2(){return QueueBuilder.durable("simple.queue") // 指定队列名称,并持久化.deadLetterExchange("dl.direct") // 指定死信交换机.build();
}
// 声明死信交换机 dl.direct
@Bean
public DirectExchange dlExchange(){return new DirectExchange("dl.direct", true, false);
}
// 声明存储死信的队列 dl.queue
@Bean
public Queue dlQueue(){return new Queue("dl.queue", true);
}
// 将死信队列 与 死信交换机绑定
@Bean
public Binding dlBinding(){return BindingBuilder.bind(dlQueue()).to(dlExchange()).with("simple");
}

死信交换机的使用场景是什么?

  • 如果队列绑定了死信交换机,死信会投递到死信交换机;
  • 可以利用死信交换机收集所有消费者处理失败的消息(死信),交由人工处理,进一步提高消息队列的可靠性。

延迟队列

允许消息在设置的时间内未被消费,如果到期,未消费发送到死信队列
利用TTL结合死信交换机,我们实现了消息发出后,消费者延迟收到消息的效果。这种消息模式就称为延迟队列(Delay Queue)模式。
上面这种方式不推荐。
官方推荐
使用插件,
RabbitMQ有一个官方的插件社区,地址为:https://www.rabbitmq.com/community-plugins.html
其中包含各种各样的插件,包括我们要使用的DelayExchange插件:
大家可以去对应的GitHub页面下载3.8.9版本的插件,地址为https://github.com/rabbitmq/rabbitmq-delayed-message-exchange/releases/tag/3.8.9这个对应RabbitMQ的3.8.5以上版本

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/131626.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

hive 知识总结

​编辑 社区公告教程下载分享问答JD 登 录 注册 01 hive 介绍与安装 1 hive介绍与原理分析 Hive是一个基于Hadoop的开源数据仓库工具,用于存储和处理海量结构化数据。它是Facebook 2008年8月开源的一个数据仓库框架,提供了类似于SQL语法的HQL&#xf…

《进化优化》 第2章 优化

文章目录 2.1 无约束优化2.2 约束优化2.3 多目标优化2.4 多峰优化2.5 组合优化2.6 爬山法最快上升爬山法依次上升爬山法随机变异爬山法自适应爬山法 2.7 智能 2.1 无约束优化 一个问题可以写成最小化问题也可以写成最大化问题。两者可以互相转化: 当想要最小化一个…

【计算机网络】-基础知识

1.计算机网络(计算机技术通信技术)的结合 ICTITCT 2.计算机分类1:通信子网(通信节点、通信链路),资源子网(PC、服务器,类似终端节点) 分类2:网络的结构,例如…

Springboot接收http参数总结(最简单易懂)

1. 前端能携带请求参数的地方 http请求一半前端请求参数放在三个地方:请求头,请求查询参数(Query String),请求体。 请求体需要获取HttpServletRequest对象才能获取。 2. 请求体常见格式 而请求体中可以存放多种格式…

Android组件通信(二十四)

1. Activity生命周期 1.1 知识点 &#xff08;1&#xff09;掌握Activity的生命周期及操作方法&#xff1b; 1.2 具体内容 范例&#xff1a; 第一个配置文件 <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"xmlns:tools"http…

第18篇ESP32platformio-arduino框架-ili9488-3.5lcd显示时间天气

第18篇ESP32platformio-arduino框架-ili9488-lcd显示时间天气 第18篇esp32ili9488lcd显示时间天气 连接方法&#xff1a; 修改WIFI&#xff1a; 关键代码 void setup() {Serial.begin(115200);WiFi.mode(WIFI_STA);WiFi.begin(ssid,password);Serial.print("\r\nConnect…

微信小程序通过 movable-area 做一个与vuedraggable相似的上下拖动排序控件

因为只是做个小案例 我就直接代码写page页面里了 其实很简单 组件稍微改一下就好了 wxss /* 设置movable-area的宽度 */ .area{width: 100%; }/* a b c 每条元素的样式 */ movable-view {width: 100%;background-color: red;height: 40px;line-height: 40px;color: #FFFFFF;tex…

电子电路学习笔记——LDO稳压器 NCP114ASN330T1G的应用

关于LDO稳压器&#xff08;Low-Dropout Regulator&#xff09;&#xff1f; 是一种用于电源管理的集成电路&#xff0c;常用于将高电压转换为较低且稳定的工作电压。LDO稳压器可以在输入电压几乎等于输出电压的情况下工作&#xff0c;因此它们具有较低的压降&#xff08;dropo…

深度学习笔记之优化算法(八)Adam算法的简单认识

深度学习笔记之优化算法——Adam算法的简单认识 引言回顾&#xff1a;基于Nesterov动量的RMSProp算法Adam算法的简单认识一阶矩、二阶矩修正偏差的功能Adam的算法过程描述Adam示例代码 引言 上一节介绍了基于 Nesterov \text{Nesterov} Nesterov动量与 RMSProp \text{RMSProp}…

【广州华锐互动】AR轨道交通综合教学平台的应用

轨道交通是一种复杂且精密的系统&#xff0c;涵盖了众多技术和工程学科&#xff0c;包括机械、电气和计算机科学等。对于学生来说&#xff0c;理解和掌握这些知识是一项挑战。然而&#xff0c;AR技术的出现为解决这一问题提供了可能。 通过AR技术&#xff0c;教师可以创建生动、…

PyTorch 入门

一、说明 深度学习是机器学习的一个分支&#xff0c;其中编写的算法模仿人脑的功能。深度学习中最常用的库是 Tensorflow 和 PyTorch。由于有各种可用的深度学习框架&#xff0c;人们可能想知道何时使用 PyTorch。以下是人们更喜欢使用 Pytorch 来完成特定任务的原因。 Pytorch…

安防监控视频汇聚平台EasyCVR视频广场搜索异常,报错“通道未开启”的问题排查与解决

安防视频监控系统EasyCVR视频汇聚平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等&#xff0c;能对外分发RTSP、RTMP、FLV、…