分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测

目录

    • 分类预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入分类预测;
2.运行环境为Matlab2018b;
3.输入多个特征,分四类预测;
4.data为数据集,excel数据,前多列输入,最后输出四类标签,主程序运行即可,所有文件放在一个文件夹;
5.可视化展示分类准确率。

模型描述

RF-Adaboost随机森林结合AdaBoost多输入分类预测是一种基于机器学习和集成学习的预测方法,其主要思想是将t随机森林(RF)和AdaBoost算法相结合,通过多输入模型进行预测。
具体流程如下:
数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。
特征提取:利用RF模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。
AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。
模型评估:对预测结果进行评估。
模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoost算法的参数等。
预测应用:将优化后的模型应用于实际预测任务中,进行实时预测。
该方法的优点在于,RF模型可以提取数据特征,而AdaBoost算法可以有效地利用多个特征向量进行加权组合,提高预测准确率。同时,该方法不仅适用于单一数据源的预测任务,也可以应用于多数据源的集成预测任务中。缺点在于,该方法对数据量和计算资源的要求较高,需要大量的训练数据和计算能力。

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式:私信回复RF-Adaboost随机森林结合AdaBoost多输入分类预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/132116.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

语义分割笔记(三):通过opencv对mask图片来画分割对象的外接椭圆

文章目录 mask图像介绍步骤代码 mask图像介绍 根据 mask 图像来画分割对象的外接椭圆是一种常见的图像分割任务。Mask 图像通常是一个二值图像,其中包含了感兴趣对象的像素。通常情况下,白色像素表示对象,黑色像素表示背景。 步骤 以下是一…

Linux知识点 -- 网络基础 -- 数据链路层

Linux知识点 – 网络基础 – 数据链路层 文章目录 Linux知识点 -- 网络基础 -- 数据链路层一、数据链路层1.以太网2.以太网帧格式3.重谈局域网原理4.MAC地址5.MTU6.查看硬件地址和MTU的命令7.ARP协议 二、其他重要协议或技术1.DNS(Domain Name System)2.…

MySQL 面试知识脑图 初高级知识点

脑图下载地址:https://mm.edrawsoft.cn/mobile-share/index.html?uuid18b10870122586-src&share_type1 sql_mode 基本语法及校验规则 ONLY_FULL_GROUP_BY 对于GROUP BY聚合操作,如果在SELECT中的列,没有在GROUP BY中出现&#xff…

什么是指标体系,怎么搭建一套完整的指标体系?(附PDF素材)

什么是指标体系,怎么搭建一套完整的指标体系?数字化转型过程中,这个问题一直困扰着数据分析师。主要体现在: 各部门根据业务需求,都有一部分量化指标,但不够全面,对企业整体数据分析应用能力提…

2023年中国电子白板市场规模、竞争格局及应用领域市场结构[图]

电子白板作为新型教育手段,如果合理地运用到现代教育活动中,使其自身的重视功能高效发挥出来,就能够极大地提升教育活动开展的顺利程度,加深学生对知识点的理解与把握,充分尊重学生是学习主体的地位,将保障…

C# +.Net C/S架构,在二甲医院全面实际使用三年的LIS系统源码

LIS系统源码技术细节: 体系结构:Client/Server架构 SaaS模式 客户端:WPFWindows Forms 服务端:C# .Net 数据库:Oracle 接口技术:RESTful API HttpWCF LIS检验系统一种专门用于医院化验室的计算机…

Vue、js底层深入理解笔记(二)

1.跨域 跨域原因 > 浏览器的同源策略 属于一种保护机制 如果没有同源策略的保护 一般用来处理登录cookie、服务端验证通过后会在响应头加入Set-Cookie字段、下次再发请求的时候,浏览器会自动将cookie附加在HTTP请求的头字段Cookie中、也就是说跳转到其他网站你也…

【深蓝学院】手写VIO第7章--VINS初始化和VIO系统--笔记

0. 内容 1. VIO回顾 整个视觉前端pipeline回顾: 两帧图像,可提取特征点,特征匹配(描述子暴力匹配或者光流)已知特征点匹配关系,利用几何约束计算relative pose([R|t]),translation只有方向&…

用SRM系统实现高效的询价竞价

一、SRM系统在采购中的作用: 1. 供应商管理:SRM系统能够对供应商进行分类、评估和管理,建立供应商数据库,实现供应商的标准化管理和优化选择。 2. 采购流程管理:SRM系统可以支持采购流程的标准化和自动化&#xff0c…

5Spring及Spring系列-进阶

8.1spring进阶 spring常用注解 1.Component 它是这些注解里面最普通的一个注解,一般用于把普通pojo实例化到spring容器中。 Controller和Service和Repository是它的特殊情况,当一个类不需要进行这几种特殊归类的时候,只是作为一个普通的类&am…

在SIP 语音呼叫中出现单通时要怎么解决?

在VoIP的环境中,特别是基于SIP通信的环境中,我们经常会遇到一些非常常见的问题,例如,单通,注册问题,回声,单通等。这些问题事实上都有非常直接的排查方式和解决办法,用户可以按照一定…

json库的基本使用

目录 1 将python变量转变为json变量 dumps() 2 将json变量转换为python变量 loads() 3 将键值对存储为json文件 dump() 4 读取json文件 前后端常用json进行信息的交互,不转json会有收不到的情况 我们先看一下转换成json的服务 发现该有的信息都有&#x…