OpenCV中initUndistortRectifyMap ()函数与十四讲中去畸变公式的区别探究

文章目录

      • 1.十四讲中的去畸变公式
      • 2. OpenCV中的去畸变公式
      • 3. 4个参数和8个参数之间的区别
      • 4.initUndistortRectifyMap()函数源码

最近在使用OpenCV对鱼眼相机图像去畸变时发现一个问题,基于针孔模型去畸变时所使用的参数和之前十四讲以及视觉SLAM中的畸变系数有一点不一样。

1.十四讲中的去畸变公式

首先是十四讲或者视觉SLAM中的方法,针孔模型的畸变系数为[k1, k2, p1, p2],使用以下去畸变公式计算:

在这里插入图片描述

2. OpenCV中的去畸变公式

在OpenCV中可以通过initUndistortRectifyMap()函数获得原始图像和矫正图像之间的映射表,然后remap()函数根据映射表对整个图像进行映射处理实现去畸变。

 cv::fisheye::initUndistortRectifyMap(K, D, cv::Mat(), K, imageSize, CV_16SC2, map1, map2);cv::remap(raw_image, undistortImg, map1, map2, cv::INTER_LINEAR, cv::BORDER_CONSTANT);

具体实现可以见文章《对鱼眼相机图像进行去畸变处理》

initUndistortRectifyMap()函数的声明如下:

void cv::initUndistortRectifyMap	
(	InputArray 	cameraMatrix,     // 原相机内参矩阵InputArray 	distCoeffs,       // 原相机畸变参数InputArray 	R,                // 可选的修正变换矩阵 InputArray 	newCameraMatrix,  // 新相机内参矩阵Size 	        size,             // 去畸变后图像的尺寸int 	        m1type,           // 第一个输出的映射(map1)的类型,CV_32FC1 or CV_16SC2OutputArray 	map1,             // 第一个输出映射OutputArray 	map2              // 第二个输出映射
)

有意思的是,这里的相机畸变参数是可选的,可以是4个参数k1, k2, p1, p2,可以是5个参数k1, k2, p1, p2, k3,也可以是8个参数k1, k2, p1, p2, k3, k4, k5, k6

后来检索了一下initUndistortRectifyMap()函数中的畸变公式,如下:
在这里插入图片描述

推导过程的核心是:
在这里插入图片描述
k3, k4, k5, k6以及s1, s2, s3, s4均为0的时候该去畸变公式和十四讲中的公式就一样了,即十四讲中的去畸变公式是该公式的一个简略版。

3. 4个参数和8个参数之间的区别

已经说过,initUndistortRectifyMap()函数中的去畸变参数可以是4个参数k1, k2, p1, p2,可以是5个参数k1, k2, p1, p2, k3,也可以是8个参数k1, k2, p1, p2, k3, k4, k5, k6

对于普通的广角相机图像,径向畸变和切向畸变一般都比较小,所以仅使用k1, k2, p1, p2就可以完成去畸变过程,对应十四讲中的去畸变公式。

对于鱼眼相机,一般会存在比较大的径向畸变,所以需要更高阶的径向畸变系数k3, k4, k5, k6,至于为什么是 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 1 + k 4 r 2 + k 5 r 4 + k 6 r 6 \frac{1+k_1r^2+k_2r^4+k_3r^6}{1+k_4r^2+k_5r^4+k_6r^6} 1+k4r2+k5r4+k6r61+k1r2+k2r4+k3r6这种比值形式,暂时为找到公式的设计原理,应该是基于对径向畸变的某种考量进行的设计。

根据标定工具和相机模型的不同,获取的鱼眼相机畸变系数可能有多种形式,需要知道的是都可以在OpenCV去畸变函数中使用。而且有时通过标定得到完整的8个去畸变参数k1, k2, p1, p2, k3, k4, k5, k6,这就使得在调用OpenCV函数去畸变事需要使用完整的参数,只使用k1, k2, p1, p2会得到失败的结果。

4.initUndistortRectifyMap()函数源码

void cv::initUndistortRectifyMap( InputArray _cameraMatrix, InputArray _distCoeffs,InputArray _matR, InputArray _newCameraMatrix,Size size, int m1type, OutputArray _map1, OutputArray _map2 )
{//相机内参、畸变矩阵Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();//旋转矩阵、摄像机参数矩阵Mat matR = _matR.getMat(), newCameraMatrix = _newCameraMatrix.getMat();if( m1type <= 0 )m1type = CV_16SC2;CV_Assert( m1type == CV_16SC2 || m1type == CV_32FC1 || m1type == CV_32FC2 );_map1.create( size, m1type );Mat map1 = _map1.getMat(), map2;if( m1type != CV_32FC2 ){_map2.create( size, m1type == CV_16SC2 ? CV_16UC1 : CV_32FC1 );map2 = _map2.getMat();}else_map2.release();Mat_<double> R = Mat_<double>::eye(3, 3);//A为相机内参Mat_<double> A = Mat_<double>(cameraMatrix), Ar;//Ar 为摄像机坐标参数if( newCameraMatrix.data )Ar = Mat_<double>(newCameraMatrix);elseAr = getDefaultNewCameraMatrix( A, size, true );//R  为旋转矩阵if( matR.data )R = Mat_<double>(matR);//distCoeffs为畸变矩阵if( distCoeffs.data )distCoeffs = Mat_<double>(distCoeffs);else{distCoeffs.create(8, 1, CV_64F);distCoeffs = 0.;}CV_Assert( A.size() == Size(3,3) && A.size() == R.size() );CV_Assert( Ar.size() == Size(3,3) || Ar.size() == Size(4, 3));//摄像机坐标系第四列参数  旋转向量转为旋转矩阵Mat_<double> iR = (Ar.colRange(0,3)*R).inv(DECOMP_LU);//ir IR矩阵的指针const double* ir = &iR(0,0);//获取相机的内参 u0  v0 为主坐标点   fx fy 为焦距double u0 = A(0, 2),  v0 = A(1, 2);double fx = A(0, 0),  fy = A(1, 1);CV_Assert( distCoeffs.size() == Size(1, 4) || distCoeffs.size() == Size(4, 1) ||distCoeffs.size() == Size(1, 5) || distCoeffs.size() == Size(5, 1) ||distCoeffs.size() == Size(1, 8) || distCoeffs.size() == Size(8, 1));if( distCoeffs.rows != 1 && !distCoeffs.isContinuous() )distCoeffs = distCoeffs.t();//畸变参数计算double k1 = ((double*)distCoeffs.data)[0];double k2 = ((double*)distCoeffs.data)[1];double p1 = ((double*)distCoeffs.data)[2];double p2 = ((double*)distCoeffs.data)[3];double k3 = distCoeffs.cols + distCoeffs.rows - 1 >= 5 ? ((double*)distCoeffs.data)[4] : 0.;double k4 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? ((double*)distCoeffs.data)[5] : 0.;double k5 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? ((double*)distCoeffs.data)[6] : 0.;double k6 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? ((double*)distCoeffs.data)[7] : 0.;//图像高度for( int i = 0; i < size.height; i++ ){//映射矩阵map1 float* m1f = (float*)(map1.data + map1.step*i);//映射矩阵map2float* m2f = (float*)(map2.data + map2.step*i);short* m1 = (short*)m1f;ushort* m2 = (ushort*)m2f;//摄像机参数矩阵最后一列向量转换成的3*3矩阵参数double _x = i*ir[1] + ir[2];double _y = i*ir[4] + ir[5];double _w = i*ir[7] + ir[8];//图像宽度for( int j = 0; j < size.width; j++, _x += ir[0], _y += ir[3], _w += ir[6] ){//获取摄像机坐标系第四列参数double w = 1./_w, x = _x*w, y = _y*w;double x2 = x*x, y2 = y*y;double r2 = x2 + y2, _2xy = 2*x*y;double kr = (1 + ((k3*r2 + k2)*r2 + k1)*r2)/(1 + ((k6*r2 + k5)*r2 + k4)*r2);double u = fx*(x*kr + p1*_2xy + p2*(r2 + 2*x2)) + u0;double v = fy*(y*kr + p1*(r2 + 2*y2) + p2*_2xy) + v0;if( m1type == CV_16SC2 ){int iu = saturate_cast<int>(u*INTER_TAB_SIZE);int iv = saturate_cast<int>(v*INTER_TAB_SIZE);m1[j*2] = (short)(iu >> INTER_BITS);m1[j*2+1] = (short)(iv >> INTER_BITS);m2[j] = (ushort)((iv & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE + (iu & (INTER_TAB_SIZE-1)));}else if( m1type == CV_32FC1 ){m1f[j] = (float)u;m2f[j] = (float)v;}else{m1f[j*2] = (float)u;m1f[j*2+1] = (float)v;}}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/132332.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

socket网络编程中设置socket选项的ioctlsocket、setsockopt和WSAIoctl函数的使用(附源码)

VC常用功能开发汇总&#xff08;专栏文章列表&#xff0c;欢迎订阅&#xff0c;持续更新...&#xff09;https://blog.csdn.net/chenlycly/article/details/124272585C软件异常排查从入门到精通系列教程&#xff08;专栏文章列表&#xff0c;欢迎订阅&#xff0c;持续更新...&a…

springboot单独在指定地方输出sql

一般线上项目都是将日志进行关闭&#xff0c;因为mybatis日志打印&#xff0c;时间长了&#xff0c;会占用大量的内存&#xff0c;如果我想在我指定的地方进行打印sql情况&#xff0c;怎么玩呢&#xff01; 下面这个场景&#xff1a; 某天线上的项目出bug了&#xff0c;日志打印…

机器人控制算法——移动机器人横向控制最优控制LQR算法

1.Introduction LQR (外文名linear quadratic regulator)即线性二次型调节器,LQR可得到状态线性反馈的最优控制规律,易于构成闭环最优控制。LQR最优控制利用廉价成本可以使原系统达到较好的性能指标(事实也可以对不稳定的系统进行整定) ,而且方法简单便于实现 ,同时利用 Ma…

【算法-动态规划】贝尔曼福特算法

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…

1700*C. Mixing Water(数学 | 二分)

Problem - 1359C - Codeforces 解析&#xff1a; 因为每次先加热水&#xff0c;再加凉水&#xff0c;所以温度的范围肯定在 [ ( hc ) / 2 , h ] 所以当 t 为 h时&#xff0c;结果为 1 当 t 小于( hc ) / 2时&#xff0c;肯定为2 &#xff08;一杯热水和一杯冷水&#xff09; …

【excel技巧】如何在Excel表格中添加选项按钮?

不知道大家是否会9遇到需要勾中选项的情况&#xff0c;我们可以在电子表格中制作出可以勾选、选中的选项按钮&#xff0c;今天我们一起学习一下设置方法。 首先&#xff0c;我们需要先在excel工具栏中添加一个功能模块&#xff1a;开发工具 依次点击excel中的文件 – 选项 –…

互动设计:深入了解用户体验的关键

交互是人与计算机系统之间的互动过程。在计算机领域中&#xff0c;交互是人机交互技术的核心内容之一。交互设计是一种基于人类行为科学、心理学、人体工程学等领域的专业设计&#xff0c;目的是创造用户友好的、易于使用的计算机软件、网络、移动应用等。交互的本质在于用户的…

Spring之IoC

Spring的设计理念和整体架构 一句话概括就是&#xff1a;Spring是一个轻量级的、非侵入式的控制反转(IOC)和面向切面(AOP)的框架。 设计理念&#xff1a; 松散耦合&#xff1a; Spring鼓励开发者编写松散耦合的代码&#xff0c;通过依赖注入和接口抽象等方式来减少组件之间的…

语音芯片基础知识 什么是语音芯 他有什么作用 发展趋势是什么

目录 一、语音芯片的简介 常见的语音芯片有哪些&#xff1f; 语音芯片的种类有很多&#xff0c;大体区分下来也就4个类别而已&#xff1a; 选型的经验说明如下&#xff1a; 推荐使用flash型语音芯片 一、语音芯片的简介 语音芯片基础知识&#xff1a; 什么是语音芯片&…

consumer罢工,几千万条im聊天数据积压在MQ中,解决思路

最近遇到一个线上问题&#xff0c;consumer出问题了&#xff0c;导致几千万条im聊天数据积压在MQ中几个小时&#xff0c;从下午五点多&#xff0c;积压到晚上十二点多。 遇到这种事一种解决办法是&#xff0c;修复consumer&#xff0c;让它慢慢消费。这样搞的话展示不了实力。 …

go 项目打包部署到服务器

1、window打包到Linux 步骤1 依次执行一下命令&#xff0c;就会得到一个exe 文件 步骤2 把打包的文件&#xff0c;放到服务器上&#xff08;可以使用FinalShell工具&#xff09; chmod x main # 执行这个命令&#xff0c;给main 文件添加 执行权限&#xff0c;然后执行 ls &…

书客、柏曼、爱德华哪款比较值得入手?三款台灯多维度测评

随着现在孩子的近视趋势越来越严峻&#xff0c;有很多家长开始意识到自己的孩子也出现了揉眼睛、时不时眯眯眼的情况。而台灯作为守护孩子用眼环境的必备用品&#xff0c;很多家长想给孩子购置一款护眼灯&#xff0c;却看见市面琳琅满目的款式根本不知道怎么购买。 所以今天为了…