从零开始探索C语言(十一)----共用体和位域

文章目录

  • 1. 共用体
    • 1.1 定义共用体
    • 1.2 访问共用体成员
  • 2. 位域
    • 2.1 位域声明
    • 2.2 位域的定义和位域变量的说明
    • 2.3 位域的使用
    • 2.4 位域小结

1. 共用体

共用体是一种特殊的数据类型,允许您在相同的内存位置存储不同的数据类型。您可以定义一个带有多成员的共用体,但是任何时候只能有一个成员带有值。共用体提供了一种使用相同的内存位置的有效方式。

1.1 定义共用体

为了定义共用体,必须使用 union 语句,方式与定义结构类似。

union 语句定义了一个新的数据类型,带有多个成员。

union 语句的格式如下:

union [union tag]
{member definition;member definition;...member definition;
} [one or more union variables];

union tag 是可选的,每个 member definition 是标准的变量定义,比如 int i; 或者 float f; 或者其他有效的变量定义。

在共用体定义的末尾,最后一个分号之前,可以指定一个或多个共用体变量,这是可选的。下面定义一个名为 Data 的共用体类型,有三个成员 i、f 和 str:

union Data
{int i;float f;char  str[20];
} data;

现在,Data 类型的变量可以存储一个整数、一个浮点数,或者一个字符串。

这意味着一个变量(相同的内存位置)可以存储多个多种类型的数据,我们可以根据需要在一个共用体内使用任何内置的或者用户自定义的数据类型。

共用体占用的内存应足够存储共用体中最大的成员。例如,在上面的实例中,Data 将占用 20 个字节的内存空间,因为在各个成员中,字符串所占用的空间是最大的。

下面的实例将显示上面的共用体占用的总内存大小:

#include <stdio.h>
#include <string.h>union Data
{int i;float f;char  str[20];
};int main( )
{union Data data;        printf( "Memory size occupied by data : %d\n", sizeof(data));return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Memory size occupied by data : 20

1.2 访问共用体成员

为了访问共用体的成员,我们使用成员访问运算符(.),成员访问运算符是共用体变量名称和我们要访问的共用体成员之间的一个句号。

我们可以使用 union 关键字来定义共用体类型的变量。

下面的实例演示了共用体的用法:

#include <stdio.h>
#include <string.h>union Data
{int i;float f;char  str[20];
};int main( )
{union Data data;        data.i = 10;data.f = 220.5;strcpy( data.str, "C Programming");printf( "data.i : %d\n", data.i);printf( "data.f : %f\n", data.f);printf( "data.str : %s\n", data.str);return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

// linux 系统下
data.i : 1917853763
data.f : 4122360580327794860452759994368.000000
data.str : C Programming// windows系统下
data.i : 1917853763
data.f : 4122360580327794900000000000000.000000
data.str : C Programming

在这里,我们可以看到共用体的 i 和 f 成员的值有损坏,因为最后赋给变量的值占用了内存位置,这也是 str 成员能够完好输出的原因。

现在让我们再来看一个相同的实例,这次我们在同一时间只使用一个变量,这也演示了使用共用体的主要目的:

#include <stdio.h>
#include <string.h>union Data
{int i;float f;char  str[20];
};int main( )
{union Data data;        data.i = 10;printf( "data.i : %d\n", data.i);data.f = 220.5;printf( "data.f : %f\n", data.f);strcpy( data.str, "C Programming");printf( "data.str : %s\n", data.str);return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

data.i : 10
data.f : 220.500000
data.str : C Programming

在这里,所有的成员都能完好输出,因为同一时间只用到一个成员。

2. 位域

C 语言的位域(bit-field)是一种特殊的结构体成员,允许我们按位对成员进行定义,指定其占用的位数。

如果程序的结构中包含多个开关的变量,即变量值为 TRUE/FALSE,如下:

struct
{unsigned int widthValidated;unsigned int heightValidated;
} status;

这种结构需要 8 字节的内存空间,但在实际上,在每个变量中,我们只存储 0 或 1,在这种情况下,C 语言提供了一种更好的利用内存空间的方式。如果在结构内使用这样的变量,可以定义变量的宽度来告诉编译器将只使用这些字节。

例如,上面的结构可以重写成:

struct
{unsigned int widthValidated : 1;unsigned int heightValidated : 1;
} status;

现在,上面的结构中,status 变量将占用 4 个字节的内存空间,但是只有 2 位被用来存储值。

如果你用了 32 个变量,每一个变量宽度为 1 位,那么 status 结构将使用 4 个字节,但只要你再多用一个变量,如果使用了 33 个变量,那么它将分配内存的下一段来存储第 33 个变量,这个时候就开始使用 8 个字节。

让我们看看下面的实例来理解这个概念:

#include <stdio.h>
#include <string.h>/* 定义简单的结构 */
struct
{unsigned int widthValidated;unsigned int heightValidated;
} status1;/* 定义位域结构 */
struct
{unsigned int widthValidated : 1;unsigned int heightValidated : 1;
} status2;int main( )
{printf( "Memory size occupied by status1 : %d\n", sizeof(status1));printf( "Memory size occupied by status2 : %d\n", sizeof(status2));return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Memory size occupied by status1 : 8
Memory size occupied by status2 : 4

位域的特点和使用方法如下:

  1. 定义位域时,可以指定成员的位域宽度,即成员所占用的位数。
  2. 位域的宽度不能超过其数据类型的大小,因为位域必须适应所使用的整数类型。
  3. 位域的数据类型可以是 int、unsigned int、signed int 等整数类型,也可以是枚举类型。
  4. 位域可以单独使用,也可以与其他成员一起组成结构体。
  5. 位域的访问是通过点运算符(.)来实现的,与普通的结构体成员访问方式相同。

2.1 位域声明

有些信息在存储时,并不需要占用一个完整的字节,而只需占几个或一个二进制位。例如在存放一个开关量时,只有 0 和 1 两种状态,用 1 位二进位即可。为了节省存储空间,并使处理简便,C 语言又提供了一种数据结构,称为"位域"或"位段"。

所谓"位域"是把一个字节中的二进位划分为几个不同的区域,并说明每个区域的位数。每个域有一个域名,允许在程序中按域名进行操作。这样就可以把几个不同的对象用一个字节的二进制位域来表示。

典型的实例:

用 1 位二进位存放一个开关量时,只有 0 和 1 两种状态。
读取外部文件格式——可以读取非标准的文件格式。例如:9 位的整数。

2.2 位域的定义和位域变量的说明

位域定义与结构定义相仿,其形式为:

struct 位域结构名 
{位域列表};

其中位域列表的形式为:

type [member_name] : width ;

下面是有关位域中变量元素的描述:

type 只能为 int(整型),unsigned int(无符号整型),signed int(有符号整型) 三种类型,决定了如何解释位域的值。
member_name 位域的名称。
width 位域中位的数量。宽度必须小于或等于指定类型的位宽度。

带有预定义宽度的变量被称为位域。位域可以存储多于 1 位的数,例如,需要一个变量来存储从 0 到 7 的值,您可以定义一个宽度为 3 位的位域,如下:

struct
{unsigned int age : 3;
} Age;

上面的结构定义指示 C 编译器,age 变量将只使用 3 位来存储这个值,如果您试图使用超过 3 位,则无法完成。

struct bs{int a:8;int b:2;int c:6;
}data;

以上代码定义了一个名为 struct bs 的结构体,data 为 bs 的结构体变量,共占四个字节:

对于位域来说,它们的宽度不能超过其数据类型的大小,在这种情况下,int 类型的大小通常是 4 个字节(32位)。

相邻位域字段的类型相同,且其位宽之和小于类型的 sizeof大小,则后面的字段将紧邻前一个字段存储,直到不能容纳为止。

让我们再来看一个实例:

struct packed_struct {unsigned int f1:1;unsigned int f2:1;unsigned int f3:1;unsigned int f4:1;unsigned int type:4;unsigned int my_int:9;
} pack;

以上代码定义了一个名为 packed_struct 的结构体,其中包含了六个成员变量,pack 为 packed_struct 的结构体变量。

在这里,packed_struct 包含了 6 个成员:四个 1 位的标识符 f1…f4、一个 4 位的 type 和一个 9 位的 my_int。

让我们来看下面的实例,

实例 1:

#include <stdio.h>struct packed_struct {unsigned int f1 : 1;   // 1位的位域unsigned int f2 : 1;   // 1位的位域unsigned int f3 : 1;   // 1位的位域unsigned int f4 : 1;   // 1位的位域unsigned int type : 4; // 4位的位域unsigned int my_int : 9; // 9位的位域
};int main() {struct packed_struct pack;pack.f1 = 1;pack.f2 = 0;pack.f3 = 1;pack.f4 = 0;pack.type = 7;pack.my_int = 255;printf("f1: %u\n", pack.f1);printf("f2: %u\n", pack.f2);printf("f3: %u\n", pack.f3);printf("f4: %u\n", pack.f4);printf("type: %u\n", pack.type);printf("my_int: %u\n", pack.my_int);return 0;
}

以上实例定义了一个名为 packed_struct 的结构体,其中包含了多个位域成员。

在 main 函数中,创建了一个 packed_struct 类型的结构体变量 pack,并分别给每个位域成员赋值。

然后使用 printf 语句打印出每个位域成员的值。

输出结果为:

f1: 1
f2: 0
f3: 1
f4: 0
type: 7
my_int: 255 

实例 2:

#include <stdio.h>
#include <string.h>struct
{unsigned int age : 3;
} Age;int main( )
{Age.age = 4;printf( "Sizeof( Age ) : %d\n", sizeof(Age) );printf( "Age.age : %d\n", Age.age );Age.age = 7;printf( "Age.age : %d\n", Age.age );Age.age = 8; // 二进制表示为 1000 有四位,超出printf( "Age.age : %d\n", Age.age );return 0;
}

当上面的代码被编译时,它会带有警告,当上面的代码被执行时,它会产生下列结果:
在这里插入图片描述

Sizeof( Age ) : 4
Age.age : 4
Age.age : 7
Age.age : 0

计算字节数:

实例

#include <stdio.h>struct example1 {int a : 4;int b : 5;int c : 7;
};int main() {struct example1 ex1;printf("Size of example1: %lu bytes\n", sizeof(ex1));return 0;
}

以上实例中,example1 结构体包含三个位域成员 a,b 和 c,它们分别占用 4 位、5 位和 7 位。

通过 sizeof 运算符计算出 example1 结构体的字节数,并输出结果:

Size of example1: 4 bytes

对于位域的定义尚有以下几点说明:

一个位域存储在同一个字节中,如一个字节所剩空间不够存放另一位域时,则会从下一单元起存放该位域,也可以有意使某位域从下一单元开始。

例如:

struct bs{unsigned a:4;unsigned  :4;    /* 空域 */unsigned b:4;    /* 从下一单元开始存放 */unsigned c:4
}

在这个位域定义中,a 占第一字节的 4 位,后 4 位填 0 表示不使用,b 从第二字节开始,占用 4 位,c 占用 4 位。

位域的宽度不能超过它所依附的数据类型的长度,成员变量都是有类型的,这个类型限制了成员变量的最大长度,: 后面的数字不能超过这个长度。

位域可以是无名位域,这时它只用来作填充或调整位置。无名的位域是不能使用的。例如:

struct k{int a:1;int  :2;    /* 该 2 位不能使用 */int b:3;int c:2;
};

从以上分析可以看出,位域在本质上就是一种结构类型,不过其成员是按二进位分配的。

2.3 位域的使用

位域的使用和结构成员的使用相同,其一般形式为:

位域变量名.位域名
位域变量名->位域名

位域允许用各种格式输出。

实例:

#include <stdio.h>int main(){struct bs{unsigned a:1;unsigned b:3;unsigned c:4;} bit,*pbit;bit.a=1;    /* 给位域赋值(应注意赋值不能超过该位域的允许范围) */bit.b=7;    /* 给位域赋值(应注意赋值不能超过该位域的允许范围) */bit.c=15;    /* 给位域赋值(应注意赋值不能超过该位域的允许范围) */printf("%d,%d,%d\n",bit.a,bit.b,bit.c);    /* 以整型量格式输出三个域的内容 */pbit=&bit;    /* 把位域变量 bit 的地址送给指针变量 pbit */pbit->a=0;    /* 用指针方式给位域 a 重新赋值,赋为 0 */pbit->b&=3;    /* 使用了复合的位运算符 "&=",相当于:pbit->b=pbit->b&3,位域 b 中原有值为 7,与 3 作按位与运算的结果为 3(111&011=011,十进制值为 3) */pbit->c|=1;    /* 使用了复合位运算符"|=",相当于:pbit->c=pbit->c|1,其结果为 15 */printf("%d,%d,%d\n",pbit->a,pbit->b,pbit->c);    /* 用指针方式输出了这三个域的值 */
}

编译执行结果:

1,7,15
0,3,15

上例程序中定义了位域结构 bs,三个位域为 a、b、c,说明了 bs 类型的变量 bit 和指向 bs 类型的指针变量 pbit,这表示位域也是可以使用指针的。

2.4 位域小结

位域是C语言中的一个高级特性,它允许你在结构体中以位为单位来分配内存,以便有效地存储和操作位数据。位域常用于处理硬件寄存器、压缩数据、或者在嵌入式系统中节省内存。以下是位域的使用详解:

  1. 位域的定义:位域是通过在结构体或联合体中的成员后面加上冒号和位宽来定义的。例如:

    struct Flags {unsigned int flag1 : 1;  // 1位用于表示flag1unsigned int flag2 : 2;  // 2位用于表示flag2unsigned int flag3 : 3;  // 3位用于表示flag3
    };
    
  2. 位宽:位宽表示了每个位域所占用的位数。它必须是一个非负整数。

  3. 位域的取值和赋值:你可以像操作普通变量一样来操作位域的值。例如:

    struct Flags myFlags;
    myFlags.flag1 = 1;  // 设置flag1为1
    myFlags.flag2 = 2;  // 设置flag2为2
    
  4. 位域的范围:每个位域的位宽决定了它可以表示的数值范围。在上面的例子中,flag1可以表示0或1,flag2可以表示0、1、2或3,flag3可以表示0到7。

  5. 注意位域的存储顺序:位域的存储顺序在不同编译器下可能不同。通常,它们从结构体的低位向高位存储,但这并不是C语言标准要求的。如果你需要确保特定的位域顺序,可以使用#pragma pack等编译指令。

  6. 位域的注意事项

    • 不同编译器对位域的实现可能有所不同,特别是在不同硬件平台上。
    • 位域应谨慎使用,因为它们可能导致可移植性问题。
    • 位域不能取地址,也不能用于数组。
    • 不同位域不能共享存储位置,因此它们不能重叠。

总的来说,位域是C语言中的一个强大工具,但在使用时需要注意编译器的实现细节和平台兼容性,以确保程序的可靠性和可移植性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/132626.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序 movable-view 控制长按才触发拖动 轻轻滑动页面正常滚动效果

今天写 movable-areamovable-view遇到了个头疼的问题 那就是 movable-view 监听了用户拖拽自己 但 我们小程序 上下滚动页面靠的也是拖拽 也就是说 如果放在这里 用户拖动 movable-view部分 就会永远触发不了滚动 那么 我们先可以 加一个 bindlongpress"longpressHandler…

数据结构—顺序表

目录 1.线性表 2.顺序表概念 3.实现顺序表 (1)声明结构体 (2)初始化 (3)打印数据 (4) 销毁 (5)尾插&头插 尾插 判断是否扩容 头插 (6)尾删&头删 尾删 头删 (7)指定位置插入元素 (8)删除指定位置元素 (9)查找指定元素位置 (10)修改指定位置元素 完整版…

【21】c++设计模式——>装饰模式

装饰模式的定义 装饰模式也可以称为封装模式&#xff0c;所谓的封装就是在原有行为之上进行扩展&#xff0c;并不会改变该行为&#xff1b; 例如网络通信&#xff1a; 在进行网络通信的时候&#xff0c;数据是基于IOS七层或四层网络模型&#xff08;某些层合并之后就是四层模型…

Mongodb----部署副本集 实现读写分离

使用软件&#xff1a; xshell7 vmware16 centos8 nosql booster 1 部署副本集 推荐方案&#xff1a; 为了降低资源分配&#xff0c;这里仅使用一台服务器&#xff0c;但是分配3个端口&#xff08;27017、27018、27019&#xff09;来分别实现 主节点、副本节点…

35道Rust面试题

这套Rust面试题包括了填空题、判断题、连线题和编码题等题型。 选择题 1 &#xff0c;下面哪个是打印变量language的正确方法&#xff1f; A&#xff0c;println("{}", language); B&#xff0c;println(language); C&#xff0c;println!("{}", langu…

接口自动化测试 —— 协议、请求流程

一、架构 CRM客户关系管理系统 SAAS Software As A Service 软件即服务 PAAS Platform AS A Service 平台即服务 快速交付→ 快&#xff1a;自己去干、有结果、事事有回音、持续改进 单体架构——》垂直架构——》面向服务架构——》微服务架构&#xff08;分布式&#xf…

轻量限制流量?阿里云轻量应用服务器月流量包收费说明

阿里云轻量应用服务器部分套餐限制月流量&#xff0c;轻量应用服务器按照套餐售卖&#xff0c;有的套餐限制月流量&#xff0c;有的不限制流量。像阿里云轻量2核2G3M带宽轻量服务器一年108元和轻量2核4G4M带宽一年297.98元12个月&#xff0c;这两款是不限制月流量的。阿里云百科…

解析项目管理任务跟踪器,助力项目进展掌握!

什么是项目管理任务跟踪器&#xff1f;项目管理任务跟踪器是项目经理简化计划、组织和执行项目任务直至完成的重要工具。该工具可帮助他们掌握需要完成的工作、确定收到的工作请求的优先级、完成项目并在预算范围内按时实现目标。 除了布置和跟踪任务之外&#xff0c;项目管理任…

通过Node.js获取高德的省市区数据并插入数据库

通过Node.js获取高德的省市区数据并插入数据库 1 创建秘钥1.1 登录高德地图开放平台1.2 创建应用1.3 绑定服务创建秘钥 2 获取数据并插入2.1 创建数据库连接工具2.2 请求数据2.3 数据处理2.4 全部代码 3 还可以打印文件到本地 1 创建秘钥 1.1 登录高德地图开放平台 打开开放平…

rv1126-rknpu-v1.7.3添加opencv库

rv1126所使用的rknn sdk里默认是不带opencv库的&#xff0c;官方所用的例程里也没有使用opencv&#xff0c;但是这样在进行图像处理的时候有点麻烦了&#xff0c;这里有两种办法: 一是先用python将所需要的图片处理好后在转化为bin格式文件&#xff0c;在使用c或c进行读取&…

【大数据 | 综合实践】大数据技术基础综合项目 - 基于GitHub API的数据采集与分析平台

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

2023.10.12

#include <iostream>using namespace std; //定义动物类 class Animal { private:string name; public:Animal(){}Animal(string name):name(name){}~Animal(){}//定义虚函数virtual void perform()0;//表演的节目void show(){cout << "Please enjoy the spec…