yolov8 strongSORT多目标跟踪工具箱BOXMOT

1 引言

多目标跟踪MOT项目在Github中比较完整有:BOXMOT , 由mikel brostrom提供。在以前的版本中,有yolov5+deepsort(版本v3-v5), yolov8+strongsort(版本v6-v9),直至演变到v10,名称BOXMOT。
BOXMOT提供三种对象检测器:yolov8, yolo_nas, yolox; 支持多个跟踪器:BoTSORT, DeepOCSORT, OCSORT, Hybridsort, ByteTrack, StrongSORT 。以前常见的DeepSort在此由增强型StrongSORT替代。

2 安装BOXMOT

boxmot安装
安装环境:Ubuntu18.04,python 3.8,已建有虚拟环境。

将boxmot从github克隆到本地,建立yolo_tracking目录:

git clone https://github.com/mikel-brostrom/yolo_tracking.git
cd yolo_tracking
pip install -v -e .

第三个命令pip install -v -e. 相当于 python setup.py develop,即根据setup.py执行安装,其中“develop”参数将软件包以开发模式安装到Python环境中,以便在开发过程中能够即时反映源代码的修改。
完成BOXMOT安装后,看看yolo_tracking下面有什么:
在这里插入图片描述
图1 yolo_tracking目录
见图1, BOXMOT支持的三个对象检测器定义文件yolonas.py, yolov8.py, yolox.py在examples/detectors目录。跟踪器tracker在boxmot/trackers目录下。 boxmot/appearance目录是tracker所需使用的外观识别REID模块。boxmot/configs为tracker的参数构造文件。boxmot/motion目录是运动预测用Kalman滤波器。
下一步根据需要,安装三个对象检测器。

2.1 安装ultralytics

对象检测器yolov8需要安装ultralytics python库,需注意,BOXMOT适用ultralytics v8.0.146,而最新的版本不适用。
安装ultralytics到yolo_tracking目录,操作如下:
先删除虚拟环境下和系统中可能安装的ultralytics模块:

pip uninstall ultralytics

克隆ultralytics v8.0.146

git clone https://github.com/mikel-brostrom/ultralytics.git

此操作在home目录下产生ultralytics目录。我们需要将ultralytics二级目录:~/ultralytics/ultralytics移动到yolo_tracking目录下,完成安装ultralytics。这样在python程序调试时,可以跟踪到ultralytics模块。为了防止混淆,将examples/track.py和val.py中安装ultralytics语句注释掉:

#__tr = TestRequirements()
#__tr.check_packages(('ultralytics @ git+https://github.com/mikel-brostrom/ultralytics.git', ))  # install  ultralytics

现在,已实现基础对象检测器yolov8的运行环境,可执行跟踪track.py和评估val.py程序。
运行yolov8s+strongsort对输入视频进行车辆跟踪示例:

python examples/track.py  \--yolo-model yolov8s    \--reid-mode  osnet_x0_25_market1501.pt   \--source     ~/yolo_tracking/MOT16-13-h264.mp4  \ --save         \--show         \--classes 2     \--tracking-method strongsort 

若已下载yolov8s权重文件yolov8s.pt,可在–yolo-model 变量中指定文件路径,若没下载,则track.py根据"yolov8s"自动从网上下载。

2.2 安装yoloNAS

yoloNAS需安装super-gradients:

pip install super-gradients

运行yoloNAS,实现的示例:

python examples/track.py  \--yolo-model yolo_nas_s    \--reid-mode  osnet_x0_25_market1501.pt   \--source     ~/yolo_tracking/MOT16-13-h264.mp4  \ --save         \--show         \--classes 2     \--tracking-method strongsort  

BOXMOT使用yoloNAS不能对跟踪对象类进行筛选,而把图像中所有符合COCO数据集类型的对象都提取,大数量目标对跟踪器造成很大负担,运行速度慢。
在yolonas.py的postprocess函数中增加类型过滤:

def postprocess(self, path, preds, im, im0s):results = []for i, pred in enumerate(preds):if pred is None:pred = torch.empty((0, 6))r = Results(path=path,boxes=pred,orig_img=im0s[i],names=self.names)results.append(r)else:pred[:, :4] = ops.scale_boxes(im.shape[2:], pred[:, :4], im0s[i].shape)# filter boxes by classes   ############################################pred = pred[torch.isin(pred[:, 5].cpu(), torch.as_tensor(self.args.classes))]   # added by someoner = Results(path=path,boxes=pred,orig_img=im0s[i],names=self.names)results.append(r)return results

2.3 安装YOLOX

YOLOX官网克隆到本地,产生YOLOX目录。

git clone https://github.com/Megvii-BaseDetection/YOLOX.git

将YOLOX目录下三个子目录:yolox, tools, exps 复制到yolo_tracking,完成YOLOX环境。
实现YOLOX对象检测器的跟踪示例

python examples/track.py  \--yolo-model yolox_s    \--reid-mode  osnet_x0_25_market1501.pt   \--source     ~/yolo_tracking/MOT16-13-h264.mp4  \ --save         \--show         \--tracking-method strongsort  

此BOXMOT版本v10.043在使用YOLOX上有限制,从track.py程序下载的权重文件yolox_s仅支持一个类型“person”的对象检测,不支持其他对象检测。从YOLOX Github下载权重文件yolox_s.pth支持COCO数据集的80个类型,这里需要修改:
1 YOLOX官网下载的权重文件yolox_s.pth,80个类型; BOXMOT,track.py下载的yolox_s.pt,1个person类型。在examples/detectors/yolox.py中如下修改:

def __init__(self, model, device, args):self.args = argsself.pt = Falseself.stride = 32  # max stride in YOLOX# model_type one of: 'yolox_n', 'yolox_s', 'yolox_m', 'yolox_l', 'yolox_x'model_type = self.get_model_from_weigths(YOLOX_ZOO.keys(), model)if model_type == 'yolox_n':exp = get_exp(None, 'yolox_nano')else:exp = get_exp(None, model_type)LOGGER.info(f'Loading {model_type} with {str(model)}')# download crowdhuman bytetrack modelsif not model.exists() and model.stem == model_type:LOGGER.info('Downloading pretrained weights...')gdown.download(url=YOLOX_ZOO[model_type + '.pt'],output=str(model),quiet=False)# "yolox_s.pt" 表示num_classes =1,  "yolox_s.pth"表示num_classes = 80。#    boxmot下载的ckpt只处理“person”类型,#     github.com/Megvii-BaseDetection/YOLOX提供的ckpt用于num_classes,可处理多种类型。# needed for bytetrack yolox people models# update with your custom model needsexp.num_classes = 1             self.num_classes = 1elif model.stem == model_type:exp.num_classes = 1self.num_classes = 1_, file_extension = os.path.splitext(str(model))            if file_extension == ".pth":exp.num_classes = 80           self.num_classes = 80if exp.num_classes ==1:    self.img_normal = True  #num_classes = 1,    BOXMOT format: 0.0-1.0else:self.img_normal = False   #num_classes = 80, YOLOX website ckpt format:  0-255 ckpt = torch.load(str(model),map_location=torch.device('cpu'))self.model = exp.get_model()self.model.eval()self.model.load_state_dict(ckpt["model"])self.model = fuse_model(self.model)self.model.to(device)self.model.eval()

这里,对 YoloXStrategy(YoloInterface)类增加类变量:self.num_classes,适应来自不同网站的yolox权重文件。

2 YOLOX官网yolox detector所处理的图像为0-255数据,而BOXMOT yolox detector所处理图像数据为0.0 - 1.0,需要针对不同权重文件对图像输入进行变换。对 YoloXStrategy(YoloInterface)类增加类变量:self.img_normal。

更改yolox.py postprocess

def postprocess(self, path, preds, im, im0s):results = []for i, pred in enumerate(preds):pred = postprocess(pred.unsqueeze(0),  # YOLOX postprocessor expects 3D araryself.num_classes,                                             #  1   num_classes  conf_thre=0.5,              #0.1nms_thre=0.7,            # 0.45class_agnostic=True,   )[0]

更改ultralytics/engine/predictor.py preprocess函数

def preprocess(self, im):"""Prepares input image before inference.Args:im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list."""not_tensor = not isinstance(im, torch.Tensor)if not_tensor:im = np.stack(self.pre_transform(im))im = im[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB, BHWC to BCHW, (n, 3, h, w)im = np.ascontiguousarray(im)  # contiguousim = torch.from_numpy(im)img = im.to(self.device)img = img.half() if self.model.fp16 else img.float()  # uint8 to fp16/32if not_tensor:                                 # -------------------------------------------------------------------------if not self.model.img_normal:return img                          # yolox  num_classes = 80  , img 取值 0-255                                    img /= 255                              # 0 - 255 to 0.0 - 1.0   # yolov8, yolo_nas and yolox  num_classes = 1的ckpt,img 取值 0.0 - 1.0 。return img

注:如果更改BOXMOT中默认的yolox单一类型处理模式,由于对ultralytics/engine/predictor.py preprocess方法做了修改,会涉及到yolov8和yoloNAS,所以:
yolov8: ultralytics/nn/autobackend.py, 类 AutoBackend, 增加类变量 self.img_normal = True
yoloNAS:examples/detectors/yolonas.py, 类 YoloNASStrategy, 增加类变量 self.img_normal = True

当然,如果不改变BOXMOT默认的yolox,则无需改变yolov8和yoloNAS。

对比BOXMOT 默认yolox_s.pt和YOLOX官网yolo_s.pth,两者分别运行val.py

python examples/val.py   \
--yolo-model    examples/weights/yolox_s.pt  \   --tracking-method  deepocsort   \--benchmark  MOT17python examples/val.py   \
--yolo-model    examples/weights/yolox_s.pth  \   --tracking-method  deepocsort   \--benchmark  MOT17

得到如下结果(取MOT17 - FRCNN每个序列的前10帧):

                                  HOTA           MOTA          MOTP          IDF1
yolox_s.pt             68.294         67.268         81.267       81.403   
yolox_s.pth           60.038         52.223         78.765       70.531

这因为yolox_s.pt是针对拥挤行人情况的权重,而yolox_s.pth则适用于COCO各种类型,所以评价指标有提高。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/132699.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python+pytest接口自动化(一)—接口测试基础

接口定义 一般我们所说的接口即API,那什么又是API呢,百度给的定义如下: API(Application Programming Interface,应用程序接口)是一些预先定义的接口(如函数、HTTP接口)&#xff0…

JS VUE 用 canvas 给图片加水印

最近写需求,遇到要给图片加水印的需求。 刚开始想的方案是给图片上覆盖一层水印照片,但是这样的话用户直接下载图片水印也会消失。 后来查资料发现用 canvas 就可以给图片加水印,下面是处理过程。 首先我们要确认图片的格式,我们通…

2023NOIP A层联测10-子序列

给定一个长为 n n n 的仅有小写英文字母构成字符串 S S 1 S 2 ⋯ S n SS_1S_2\cdots S_n SS1​S2​⋯Sn​。我们定义一个字符串是好的,当且仅当它可以用两个不同的字母 x 和 y 表示成 xyxyxyx... 的形式。例如,字符串 abab、tot、z 是好的&#xff0c…

【Java 进阶篇】JavaScript三元运算符详解

JavaScript是一门广泛用于前端和后端开发的编程语言,具备强大的表达式和运算符。本篇博客将重点介绍JavaScript中的三元运算符,解释其语法、用法和示例。如果您是JavaScript初学者,或者希望更深入了解这门语言的运算符,那么这篇博…

java Maven入门笔记

后端Web开发技术的学习,我们要先学习Java项目的构建工具:Maven 目录 Maven概述Maven介绍及其作用Maven模型介绍Maven仓库Maven安装 IDEA集成Maven配置Maven环境当前工程设置全局设置 Maven项目创建Maven项目POM配置详解Maven坐标详解 导入Maven项目 依赖…

数据结构 第3章作业 栈和队列 西安石油大学

第3章 栈和队列 有5个元素,其入栈次序为:A,B,C,D,E,在各种可能的出栈次序中,以元素C、D最先出栈(即C第一个且D第二个出栈)的次序有哪几个? 3个:CDEBA;CDBEA;CDBAE 此题考查的知识…

小谈设计模式(26)—中介者模式

小谈设计模式(26)—中介者模式 专栏介绍专栏地址专栏介绍 中介者模式分析角色分析抽象中介者(Mediator)具体中介者(ConcreteMediator)抽象同事类(Colleague)具体同事类(C…

计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度(matlab代码)

目录 1 主要内容 系统结构 CCPP-P2G-燃气机组子系统 非线性处理缺陷 2 部分代码 3 程序结果 4 程序链接 1 主要内容 该程序参考《计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度》模型,主要实现的是计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度…

servlet基础知识

目录 什么是servlet概念/定义作用 servlet容器概念/是什么作用如何配置和管理 servlet生命周期有哪些生命周期每个周期中可以执行哪些操作 创建和编写servlet如何创建一个简单的servletservlet类的结构是什么样的如何处理HTTP请求和响应 servlet映射和URL模式什么是servlet映射…

黄金票据与白银票据

文章目录 黄金票据与白银票据1. 背景2. 具体实现2.1 Kerberos协议认证流程 3. 黄金票据3.1 条件3.2 适用场景3.3 利用方式 4. 白银票据4.1 条件4.2 适用场景4.3 利用方式 5. 金票和银票的区别5.1 获取的权限不同5.2 认证流程不同5.3 加密方式不同 6. 经典面试题6.1 什么是黄金票…

github小记(一):清除github在add或者commit之后缓存区

github清除在add或者commit之后缓存区 前言1. 第一步之后想要撤销2. 第二步之后想要撤销a. 改变一下rrr.txt的内容b. 想提交本地文件的test文件夹c. 我后悔了突然不想提交了 前言 github自用 一般github上代码提交顺序: 第一步: git add . or git ad…

数据库Mysql三大引擎(InnoDB、MyISAM、 Memory)与逻辑架构

MySQL数据库及其分支版本主要的存储引擎有InnoDB、MyISAM、 Memory等。简单地理解,存储引擎就是指表的类型以及表在计算机上的存储方式。存储引擎的概念是MySQL的特色,使用的是一个可插拔存储引擎架构,能够在运行的时候动态加载或者卸载这些存…