Java实现B树

1.介绍

B树是一种自平衡的搜索树数据结构,常用于数据库和文件系统中的索引结构。它具有以下好处和功能:

  1. 高效的查找操作:B树的特点是每个节点可以存储多个关键字,并且保持有序。通过在节点上进行二分查找,可以快速定位目标关键字的位置,从而实现高效的查找操作。

  2. 平衡性:B树通过自平衡的方式维护树的平衡性,即保证树的每个叶子节点到根节点的路径长度相等。这种平衡性能够确保各种操作的时间复杂度保持在较低水平,例如插入、删除和查找等操作都可以在对数时间内完成。

  3. 适应大型数据集:B树适用于存储大型数据集,并且可以处理非常大的索引。其节点可以存储多个关键字,因此在相同层数的情况下,B树可以存储更多的数据。

  4. 支持范围查询:由于B树的节点有序,因此可以很方便地进行范围查询。通过定位范围的起始和结束关键字所在的节点,可以快速地获取指定范围内的数据。

  5. 高效的插入和删除操作:B树通过平衡性的维护,使得插入和删除操作具有较低的时间复杂度。它可以通过调整节点的结构,避免过深或过浅的树结构,从而保持树的平衡。

总的来说,B树是一种高效的数据结构,能够应对大规模数据集的索引需求,并提供快速的查找、插入和删除操作。它在数据库和文件系统中广泛应用,为数据的组织和访问提供了便利。

2.代码分析

1.分裂

当键的数量超过 2t - 1的时候就会进行分裂操作,规则就是中间的向上分裂,大的交给一个新的节点,小的交给自己

如果不是叶子节点就需要把后半部分子节点给新的节点,

2.添加

  1. 首先,根据给定的关键字,从根节点开始向下搜索,找到合适的叶子节点。

  2. 在叶子节点中插入新的关键字。如果叶子节点未满,直接插入;否则,执行步骤3。

  3. 当叶子节点已满时,需要进行分裂操作。将当前节点一分为二,得到两个新的叶子节点,并选择一个关键字提升到父节点中。

  4. 如果父节点也已满,则重复步骤3,层层递归地向上分裂,直到找到一个非满节点或达到树的顶部。

  5. 完成插入操作后,需要更新祖先节点的关键字信息。如果某个节点发生了分裂,它提升的关键字需要插入到其父节点中,并根据大小顺序进行调整。

通过以上步骤,B树的插入操作可以保持树的平衡性。在插入过程中,B树会根据节点的容量进行自动调整,使得树的高度保持相对较低,从而确保各种操作的效率。

需要注意的是,在插入操作中可能会出现关键字重复的情况。对于B树来说,可以允许存在相同的关键字,而在查找操作时,会按照节点中关键字的大小顺序进行搜索。因此,在插入过程中需要根据具体需求来处理关键字重复的情况。

3.查找

  1. 从根节点开始,比较要查找的关键字与当前节点中的关键字。

  2. 如果找到了匹配的关键字,则表示查找成功,结束操作。

  3. 如果要查找的关键字小于当前节点的最小关键字,则进入当前节点的左子树进行继续查找。

  4. 如果要查找的关键字大于当前节点的最大关键字,则进入当前节点的右子树进行继续查找。

  5. 重复步骤 3 和 4,直到找到匹配的关键字或者到达叶子节点。

  6. 如果到达叶子节点仍然没有找到匹配的关键字,则表示查找失败,结束操作。

在B树的查找过程中,关键字的比较会指导搜索方向,通过不断地按照关键字的大小顺序向下搜索,可以快速地找到目标关键字或者判断其不存在。

需要注意的是,B树中允许存在相同的关键字,因此在查找操作中,如果存在多个相同的关键字,可以根据具体需求选择返回其中一个或全部。此外,B树的查找操作具有较好的平均时间复杂度,可以在较短的时间内完成查询。

3.代码实现

1.准备工作

//节点类
class BTreeNode {// B树的阶数int t;List<Integer> keys;//关键字List<BTreeNode> childNodes;//孩子boolean leaf;//判断节点是否是叶子结点public BTreeNode(int t, boolean leaf) {this.t = t;this.leaf = leaf;this.keys = new ArrayList<>();this.childNodes = new ArrayList<>();}
}

2.升序遍历树

 public void traverse() {int i;for (i = 0; i < keys.size(); i++) {if (!leaf) {//去索引为i的孩子里面继续找childNodes.get(i).traverse();}System.out.print(keys.get(i) + " ");}//最后还剩一个关键字的孩子节点if (!leaf) {childNodes.get(i).traverse();}}

3.查找值所在的位置

 public int search(int key) {int i = 0;//先找到比值小和等的节点 然后小的递归找孩子while (i < keys.size() && key > keys.get(i)) {i++;}//等的if (i < keys.size() && key == keys.get(i)) {return i;} else if (leaf) {//都到叶子了还没找到就无了return -1;} else {//递归继续去他的子节点找  小的return childNodes.get(i).search(key);}}

4.添加

 public void insertNonFull(int key) {//处理节点未满的情况int i = keys.size() - 1;if (leaf) {//叶节点while (i >= 0 && key < keys.get(i)) {//从后往前 找出比你小的那个ii--;}keys.add(i + 1, key);//因为第i个位置是比你小的,所以你要插入后面一个} else {//非叶节点while (i >= 0 && key < keys.get(i)) {//找到要插入子节点的位置i--;}//判断子节点是否需要分裂操作if (childNodes.get(i + 1).keys.size() == (2 * t) - 1) {splitChild(i + 1, childNodes.get(i + 1));if (key > keys.get(i + 1)) {i++;}}//分裂完毕 或者 不需要分裂 递归插入childNodes.get(i + 1).insertNonFull(key);}}

5.分裂

 public void splitChild(int i, BTreeNode y) {//处理节点满的情况进行分裂操作BTreeNode z = new BTreeNode(y.t, y.leaf);keys.add(i, y.keys.get(t - 1));//中间的上移childNodes.add(i + 1, z);//创建新的孩子for (int j = 0; j < t - 1; j++) {//后面的移动到新的里面z.keys.add(j, y.keys.get(j + t));}if (!y.leaf) {//后半部分子节点移动到新的节点for (int j = 0; j < t; j++) {z.childNodes.add(j, y.childNodes.get(j + t));}}//主要总用时为了情况没有用的部分//获取被拆分节点后半部分的关键字和子节点部分。y.keys.subList(t - 1, y.keys.size()).clear();//方法用于删除列表中的元素(获取完删除)y.childNodes.subList(t, y.childNodes.size()).clear();}
}

6.遍历查询

class BTree {BTreeNode root;//根节点int t;//树中的最小度数//指定默认树的度数是2public BTree() {this(2);}public BTree(int t) {this.root = null;this.t = t;}//遍历树public void traverse() {//树不为空就可以遍历if (root != null) {root.traverse();}}//查找节点的位置public int search(int key) {if (root != null) {return root.search(key);}return -1;}//插入节点public void insert(int key) {if (root == null) {root = new BTreeNode(t, true);root.keys.add(0, key);} else {if (root.keys.size() == (2 * t) - 1) {BTreeNode s = new BTreeNode(t, false);s.childNodes.add(0, root);s.splitChild(0, root);int i = 0;if (s.keys.get(0) < key) {i++;}s.childNodes.get(i).insertNonFull(key);root = s;} else {root.insertNonFull(key);}}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/133416.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

客户机操作系统已禁用 CPU。请关闭或重置虚拟机(解决)

解决&#xff1a; 关闭虚拟机进入设置点击处理器给虚拟化引擎两个勾上确认后重新即可

SpringMVC的请求处理

请求映射路径的配置 请求映射路径的配置主要是通过RequestMapping注解实现的 相关注解作用使用位置RequestMapping设置控制器方法访问路径的资源&#xff0c;可以接收任何请求方法和类上GetMapping设置控制器方法访问路径的资源&#xff0c;可接收GET请求方法和类上PostMappin…

USB转串口芯片GP232RL 完全兼容替代FT232RL SSOP28

GP232RL是一款高度集成的USB到UART桥接控制器&#xff0c;提供了一种简单的解决方案&#xff0c;可以使用最少的元器件和PCB空 间&#xff0c;将RS232接口转换为USB接口 。GP232RL包括一个USB 2.0全速功能控制器、USB收发器、振荡器、EEPROM和带有完整的调制解调器控制信号的异…

UE5 Texture2D数组资产BUG!!!

Texture2D数组资产中的元素资产更新后&#xff0c;并未被更新&#xff0c;读取的仍然是之前缓存的Texture2D&#xff0c;需要手动清除后再手动设置新的Texture2D&#xff0c;才能生效&#xff01;&#xff01;&#xff01; 说明&#xff1a;Texture2D数组资产中的后期参数高于…

Mysql8在Windows上离线安装时忘记root密码

场景 Mysql在Windows上离线安装与配置&#xff1a; Mysql在Windows上离线安装与配置_mysql 离线包 配置 及 自动启动 windows_霸道流氓气质的博客-CSDN博客 基于以上离线安装Msyql后&#xff0c;服务器重新做了系统&#xff0c;但是没有格式化磁盘或者说从 别的服务器将安装…

2核4G服务器支持多少用户同时在线访问?卡不卡?

腾讯云轻量2核4G5M带宽服务器支持多少人在线访问&#xff1f;5M带宽下载速度峰值可达640KB/秒&#xff0c;阿腾云以搭建网站为例&#xff0c;假设优化后平均大小为60KB&#xff0c;则5M带宽可支撑10个用户同时在1秒内打开网站&#xff0c;从CPU内存的角度&#xff0c;网站程序效…

SpringBoot 如何使用 Sleuth 进行分布式跟踪

使用Spring Boot Sleuth进行分布式跟踪 在现代分布式应用程序中&#xff0c;跟踪请求和了解应用程序的性能是至关重要的。Spring Boot Sleuth是一个分布式跟踪解决方案&#xff0c;它可以帮助您在分布式系统中跟踪请求并分析性能问题。本文将介绍如何在Spring Boot应用程序中使…

模拟信号隔离器在水处理控制系统中的应用方案

安科瑞 崔丽洁 摘要&#xff1a;水处理控制系统中&#xff0c;其控制、监测模块的非电量模拟量传感器采用信号隔离器的接线方式合理地解决了相关模拟量传感器供电电源安全和相对独立的问题&#xff0c;保证了监测模块的电源、模拟量采集模块和输出模块的相对隔离&#xff0c;降…

希尔贝壳受邀参加《人工智能开发平台通用能力要求 第4部分:大模型技术要求》标准第一次研讨会

随着大模型技术与经验的不断累积&#xff0c;该方向也逐渐从聚焦技术突破&#xff0c;到关注开发、部署、应用的全流程工程化落地。为完善人工智能平台标准体系建设&#xff0c;满足产业多样化需求&#xff0c;2023年9月7日&#xff0c;中国信通院云大所在线上召开《人工智能开…

qt中json类

目录 QJsonValue QJsonObject QJsonArray QJsonDocument 案例&#xff1a; Qt 5.0开始提供了对Json的支持&#xff0c;我们可以直接使用Qt提供的Json类进行数据的组织和解析&#xff0c;下面介绍4个常用的类。 QJsonValue 该类封装了JSON支持的数据类型。 布尔类型&#xf…

SpringBoot篇之集成Mybatis-plus

目录 前言一、Mybatis-plus介绍1.1 官网 二、代码生成器总结 前言 大家好&#xff0c;我是AK&#xff0c;整理的SpringBoot集成Mybatis-plus以及代码生成器的使用&#xff0c;时间原因简单的整理下&#xff0c;有问题的可以评论区见或私信我。 一、Mybatis-plus介绍 1.1 官网…

非肿瘤纯生信拿下7+,多种机器学习算法,搭配WGCNA。

今天给同学们分享一篇非肿瘤WGCNA机器学习的生信文章“Screening of immune-related secretory proteins linking chronic kidney disease with calcific aortic valve disease based on comprehensive bioinformatics analysis and machine learning”&#xff0c;这篇文章于2…