目录
一、解决报错ModuleNotFoundError: No module named ‘tensorflow.examples
二、解决报错ModuleNotFoundError: No module named ‘tensorflow.contrib‘
三、安装onnx报错assert CMAKE, ‘Could not find “cmake“ executable!‘
四、ImportError: cannot import name 'builder' from 'google.protobuf.internal'
五、解决ModuleNotFoundError: No module named 'sklearn'
六、解决AttributeError: module ‘torch._C‘ has no attribute ‘_cuda_setDevice‘
七、解决ImportError: Missing optional dependency 'pytables'. Use pip or conda to install pytables.
八、解决AttributeError: module ‘distutils’ has no attribute ‘version’.
一、解决报错ModuleNotFoundError: No module named ‘tensorflow.examples
注意:MNIST数据集下载完成后不要解压,直接放入mnist_data文件夹下读取即可。
问题:我在用tensorflow做mnist数据集案例,报错了。
原因:tensorflow中没有examples。
解决方法:(1)首先找到对应tensorflow的文件,我的是在D:\python3\Lib\site-packages\tensorflow(python的安装目录),进入tensorflow文件夹,发现没有examples文件夹。
我们可以进入github下载:mirrors / tensorflow / tensorflow · GitCode。
(2)下载完成后将\tensorflow-master\tensorflow\目录下的examples文件夹复制到本地tensorflow文件夹中,然后在重新运行代码即可。
(3)之后发现还是没能解决问题,发现examples中缺少tutorials文件夹。在官方的github中没发现这个文件,在其他博主那里下载到了该文件。
下载地址: 百度网盘 请输入提取码
提取码:cxy7
(4)但是依旧没有解决问题…
前面博主使用的应该是tf1.0的版本。参考其他博主的方法解决了问题。
- 在工程下新建一个input_data.py文件,将tutorials文件夹下mnist中的input_data.py的内容复制到该文件中,
- 再在主文件中import input_data一下。
input_data.py文件内容放在下面,需要的自取。
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data (deprecated).This module and all its submodules are deprecated.
"""from __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport collections
import gzip
import osimport numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtinfrom tensorflow.python.framework import dtypes
from tensorflow.python.framework import random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated_Datasets = collections.namedtuple('_Datasets', ['train', 'validation', 'test'])# CVDF mirror of http://yann.lecun.com/exdb/mnist/
DEFAULT_SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/'def _read32(bytestream):dt = numpy.dtype(numpy.uint32).newbyteorder('>')return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]@deprecated(None, 'Please use tf.data to implement this functionality.')
def _extract_images(f):"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].Args:f: A file object that can be passed into a gzip reader.Returns:data: A 4D uint8 numpy array [index, y, x, depth].Raises:ValueError: If the bytestream does not start with 2051."""print('Extracting', f.name)with gzip.GzipFile(fileobj=f) as bytestream:magic = _read32(bytestream)if magic != 2051:raise ValueError('Invalid magic number %d in MNIST image file: %s' %(magic, f.name))num_images = _read32(bytestream)rows = _read32(bytestream)cols = _read32(bytestream)buf = bytestream.read(rows * cols * num_images)data = numpy.frombuffer(buf, dtype=numpy.uint8)data = data.reshape(num_images, rows, cols, 1)return data@deprecated(None, 'Please use tf.one_hot on tensors.')
def _dense_to_one_hot(labels_dense, num_classes):"""Convert class labels from scalars to one-hot vectors."""num_labels = labels_dense.shape[0]index_offset = numpy.arange(num_labels) * num_classeslabels_one_hot = numpy.zeros((num_labels, num_classes))labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1return labels_one_hot@deprecated(None, 'Please use tf.data to implement this functionality.')
def _extract_labels(f, one_hot=False, num_classes=10):"""Extract the labels into a 1D uint8 numpy array [index].Args:f: A file object that can be passed into a gzip reader.one_hot: Does one hot encoding for the result.num_classes: Number of classes for the one hot encoding.Returns:labels: a 1D uint8 numpy array.Raises:ValueError: If the bystream doesn't start with 2049."""print('Extracting', f.name)with gzip.GzipFile(fileobj=f) as bytestream:magic = _read32(bytestream)if magic != 2049:raise ValueError('Invalid magic number %d in MNIST label file: %s' %(magic, f.name))num_items = _read32(bytestream)buf = bytestream.read(num_items)labels = numpy.frombuffer(buf, dtype=numpy.uint8)if one_hot:return _dense_to_one_hot(labels, num_classes)return labelsclass _DataSet(object):"""Container class for a _DataSet (deprecated).THIS CLASS IS DEPRECATED."""@deprecated(None, 'Please use alternatives such as official/mnist/_DataSet.py'' from tensorflow/models.')def __init__(self,images,labels,fake_data=False,one_hot=False,dtype=dtypes.float32,reshape=True,seed=None):"""Construct a _DataSet.one_hot arg is used only if fake_data is true. `dtype` can be either`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into`[0, 1]`. Seed arg provides for convenient deterministic testing.Args:images: The imageslabels: The labelsfake_data: Ignore inages and labels, use fake data.one_hot: Bool, return the labels as one hot vectors (if True) or ints (ifFalse).dtype: Output image dtype. One of [uint8, float32]. `uint8` output hasrange [0,255]. float32 output has range [0,1].reshape: Bool. If True returned images are returned flattened to vectors.seed: The random seed to use."""seed1, seed2 = random_seed.get_seed(seed)# If op level seed is not set, use whatever graph level seed is returnednumpy.random.seed(seed1 if seed is None else seed2)dtype = dtypes.as_dtype(dtype).base_dtypeif dtype not in (dtypes.uint8, dtypes.float32):raise TypeError('Invalid image dtype %r, expected uint8 or float32' %dtype)if fake_data:self._num_examples = 10000self.one_hot = one_hotelse:assert images.shape[0] == labels.shape[0], ('images.shape: %s labels.shape: %s' % (images.shape, labels.shape))self._num_examples = images.shape[0]# Convert shape from [num examples, rows, columns, depth]# to [num examples, rows*columns] (assuming depth == 1)if reshape:assert images.shape[3] == 1images = images.reshape(images.shape[0],images.shape[1] * images.shape[2])if dtype == dtypes.float32:# Convert from [0, 255] -> [0.0, 1.0].images = images.astype(numpy.float32)images = numpy.multiply(images, 1.0 / 255.0)self._images = imagesself._labels = labelsself._epochs_completed = 0self._index_in_epoch = 0@propertydef images(self):return self._images@propertydef labels(self):return self._labels@propertydef num_examples(self):return self._num_examples@propertydef epochs_completed(self):return self._epochs_completeddef next_batch(self, batch_size, fake_data=False, shuffle=True):"""Return the next `batch_size` examples from this data set."""if fake_data:fake_image = [1] * 784if self.one_hot:fake_label = [1] + [0] * 9else:fake_label = 0return [fake_image for _ in xrange(batch_size)], [fake_label for _ in xrange(batch_size)]start = self._index_in_epoch# Shuffle for the first epochif self._epochs_completed == 0 and start == 0 and shuffle:perm0 = numpy.arange(self._num_examples)numpy.random.shuffle(perm0)self._images = self.images[perm0]self._labels = self.labels[perm0]# Go to the next epochif start + batch_size > self._num_examples:# Finished epochself._epochs_completed += 1# Get the rest examples in this epochrest_num_examples = self._num_examples - startimages_rest_part = self._images[start:self._num_examples]labels_rest_part = self._labels[start:self._num_examples]# Shuffle the dataif shuffle:perm = numpy.arange(self._num_examples)numpy.random.shuffle(perm)self._images = self.images[perm]self._labels = self.labels[perm]# Start next epochstart = 0self._index_in_epoch = batch_size - rest_num_examplesend = self._index_in_epochimages_new_part = self._images[start:end]labels_new_part = self._labels[start:end]return numpy.concatenate((images_rest_part, images_new_part),axis=0), numpy.concatenate((labels_rest_part, labels_new_part), axis=0)else:self._index_in_epoch += batch_sizeend = self._index_in_epochreturn self._images[start:end], self._labels[start:end]@deprecated(None, 'Please write your own downloading logic.')
def _maybe_download(filename, work_directory, source_url):"""Download the data from source url, unless it's already here.Args:filename: string, name of the file in the directory.work_directory: string, path to working directory.source_url: url to download from if file doesn't exist.Returns:Path to resulting file."""if not gfile.Exists(work_directory):gfile.MakeDirs(work_directory)filepath = os.path.join(work_directory, filename)if not gfile.Exists(filepath):urllib.request.urlretrieve(source_url, filepath)with gfile.GFile(filepath) as f:size = f.size()print('Successfully downloaded', filename, size, 'bytes.')return filepath@deprecated(None, 'Please use alternatives such as:'' tensorflow_datasets.load(\'mnist\')')
def read_data_sets(train_dir,fake_data=False,one_hot=False,dtype=dtypes.float32,reshape=True,validation_size=5000,seed=None,source_url=DEFAULT_SOURCE_URL):if fake_data:def fake():return _DataSet([], [],fake_data=True,one_hot=one_hot,dtype=dtype,seed=seed)train = fake()validation = fake()test = fake()return _Datasets(train=train, validation=validation, test=test)if not source_url: # empty string checksource_url = DEFAULT_SOURCE_URLtrain_images_file = 'train-images-idx3-ubyte.gz'train_labels_file = 'train-labels-idx1-ubyte.gz'test_images_file = 't10k-images-idx3-ubyte.gz'test_labels_file = 't10k-labels-idx1-ubyte.gz'local_file = _maybe_download(train_images_file, train_dir,source_url + train_images_file)with gfile.Open(local_file, 'rb') as f:train_images = _extract_images(f)local_file = _maybe_download(train_labels_file, train_dir,source_url + train_labels_file)with gfile.Open(local_file, 'rb') as f:train_labels = _extract_labels(f, one_hot=one_hot)local_file = _maybe_download(test_images_file, train_dir,source_url + test_images_file)with gfile.Open(local_file, 'rb') as f:test_images = _extract_images(f)local_file = _maybe_download(test_labels_file, train_dir,source_url + test_labels_file)with gfile.Open(local_file, 'rb') as f:test_labels = _extract_labels(f, one_hot=one_hot)if not 0 <= validation_size <= len(train_images):raise ValueError('Validation size should be between 0 and {}. Received: {}.'.format(len(train_images), validation_size))validation_images = train_images[:validation_size]validation_labels = train_labels[:validation_size]train_images = train_images[validation_size:]train_labels = train_labels[validation_size:]options = dict(dtype=dtype, reshape=reshape, seed=seed)train = _DataSet(train_images, train_labels, **options)validation = _DataSet(validation_images, validation_labels, **options)test = _DataSet(test_images, test_labels, **options)return _Datasets(train=train, validation=validation, test=test)
二、解决报错ModuleNotFoundError: No module named ‘tensorflow.contrib‘
问题:在TensorFlow2.x版本已经不能使用contrib包
三、安装onnx报错assert CMAKE, ‘Could not find “cmake“ executable!‘
经过百度,查得:安装onnx需要protobuf编译所以安装前需要安装protobuf。
四、ImportError: cannot import name 'builder' from 'google.protobuf.internal'
问题:当运行torch转onnx的代码时,出现ImportError: cannot import name 'builder' from 'google.protobuf.internal'
,如下图:
原因:由于使用的google.protobuf
版本太低而引起的。在较新的版本中,builder
模块已经移动到了google.protobuf
包中,而不再在google.protobuf.internal
中。
解决办法:升级protobuf库
pip install --upgrade protobuf
五、解决ModuleNotFoundError: No module named 'sklearn'
问题:sklearn第三方库安装失败
原因:查看别人库的列表,发现sklearn的包名是scikit-learn
解决:安装scikit-learn,
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-learn
六、解决AttributeError: module ‘torch._C‘ has no attribute ‘_cuda_setDevice‘
网上查询原因:说我安装的torch是适合CPU的,而不是适合GPU的。于是我查询pytorch版本情况,代码如下,
import torch
torch.cuda.is_available()
结果是False。
显而易见,环境使用的是CPU版本的torch,但是我仔细检查了一下我安装的命令,如下
解决:下载三个安装包,适合GPU版本的,
可以参考这篇(1条消息) GPU版本安装Pytorch教程最新方法_pytorch gpu_水w的博客-CSDN博客
然后分别pip install 他们,这样就能够安装适合GPU版本的torch了。
七、解决ImportError: Missing optional dependency 'pytables'. Use pip or conda to install pytables.
问题:运行py文件报错
解决历程:按照提示安装pytables,"pip install pytables"安装失败,然后试了"pip install tables"安装上了。
重新运行代码,发现就不报错了。
八、解决AttributeError: module ‘distutils’ has no attribute ‘version’.
问题: AttributeError: module ‘distutils’ has no attribute ‘version’.
解决: setuptools版本问题”,版本过高导致的问题;setuptools版本
- 第一步: pip uninstall setuptools【使用pip,不能使用 conda uninstall setuptools ; 【不能使用conda的命令,原因是,conda在卸载的时候,会自动分析与其相关的库,然后全部删除,如果y的话,整个环境都需要重新配置。
- 第二步: pip或者conda install setuptools==59.5.0【现在最新的版本已经到了65了,之前的老版本只是部分保留,找不到的版本不行
然后重新运行了代码,发现没有报错了。