代码随想录Day18 LeetCode235 二叉搜索树的公共祖先 T701二叉搜索树中的插入操作 T140 删除二叉搜索树中的公共节点

LeetCode T235 二叉搜索树的公共祖先

题目链接235. 二叉搜索树的最近公共祖先 - 力扣(LeetCode)

题目思路

此题不涉及遍历顺序.

关于二叉搜索树的定义,这里我就不过多赘述了,前面几篇都说清楚了,根节点比左子树元素都大,比右子树元素都小,这道题我们就可以知道,两个节点的最近公共祖先一定满足夹在两个节点的中间这个条件.

那么,夹在两个节点之间的一定是最近的公共祖先吗?

答案是肯定的,我们不妨这样想,如果我们的节点这个时候再向左遍历,我们就会丢失右子树包含的那个节点,左子树同理.思路理顺了我们就来书写代码吧.

递归三部曲

1.函数参数和返回值

public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) 

2.终止条件

如果遇到空节点,直接返回空节点即可

         if(root == null){return null;}

3.一次递归逻辑

         if(root.val>q.val && root.val>p.val){TreeNode left = lowestCommonAncestor(root.left,p,q);if(left != null){return left;}}if(root.val<q.val && root.val<p.val){TreeNode right = lowestCommonAncestor(root.right,p,q);if(right != null){return right;}}return root;

其实我么也发现了,无论遇不遇到空节点都可以直接返回,那么我们的代码又可以进一步的简化.

题目代码

class Solution {public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {if(root == null){return null;}if(root.val>q.val && root.val>p.val){TreeNode left = lowestCommonAncestor(root.left,p,q);if(left != null){return left;}}if(root.val<q.val && root.val<p.val){TreeNode right = lowestCommonAncestor(root.right,p,q);if(right != null){return right;}}return root;}
}//上述代码的简化版
class Solution {public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);return root;}
}//迭代法
class Solution {public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {while(true){if(root.val>q.val && root.val>p.val){root = root.left;}else if(root.val<q.val && root.val<p.val){root = root.right;}else{break;}}return root;}
}

LeetCode T701 二叉搜索树中的插入操作

题目链接701. 二叉搜索树中的插入操作 - 力扣(LeetCode)

题目思路

这里我们看到这道题可以改变二叉搜索树的形状,可以返回任意有效的结果,我们就有点慌,其实这里我们所有节点的插入都可以在叶子节点完成,无论插入什么大小的节点我们都可以插入在叶子节点来解决问题.那么有了这个思路题目就变得简单了,我们只需要找到对应的叶子节点,创建一个新节点再连接即可.下面我们看看代码怎么写.

函数参数以及返回值

这里就用LeetCode本身提供的函数即可

2.终止条件

遇见空节点就说明我们找到了,直接创建新节点,向上返回即可

         if(root == null){TreeNode node = new TreeNode(val);return node;}

3.单次递归

如果在左边插入,就用左子树来接收这个节点,反之用右子树来接收

        if(val<root.val){root.left = insertIntoBST(root.left,val);}if(val>root.val){root.right = insertIntoBST(root.right,val);}return root;

题目代码

class Solution {public TreeNode insertIntoBST(TreeNode root, int val) {if(root == null){TreeNode node = new TreeNode(val);return node;}if(val<root.val){root.left = insertIntoBST(root.left,val);}if(val>root.val){root.right = insertIntoBST(root.right,val);}return root;}
}

LeetCode T140 删除二叉搜索树的节点

题目链接450. 删除二叉搜索树中的节点 - 力扣(LeetCode)

题目思路

这里我们先考虑五种可能的情况

1.找不到这个key对应的节点

2.能找到

2.1这个节点是叶子结点

直接返回空即可

2.2这个节点的左孩子为空,右孩子不为空

返回右孩子

2.3这个节点的左孩子不为空,右孩子为空

返回左孩子

2.4这个节点左右孩子都不为空

这个的处理较为复杂,我们举个例子说明

假设我们要删除7节点,我们就得调整二叉树的结构

假设我们保留右子树(保留左子树也可以,方法一样)

我们找到右子树中的最小值(右子树中的左子树的最小值),将原左子树接在这个节点下面即可

递归逻辑

1.确定递归函数以及返回值

使用函数本身即可

2.确定终止条件

由于这次的终止条件是找到节点的过程,所以较为复杂

        if(root == null){return null;}if(root.val == key){if(root.left == null && root.right == null){return  null;}else if(root.left != null && root.right == null){return root.left;}else if(root.right != null && root.left == null){return root.right;}else {TreeNode cur = root.right;while (cur.left != null) {cur = cur.left;}cur.left = root.left;root = root.right;return root;}}

3.确定一次递归逻辑

        if(root.val<key){root.right =  deleteNode(root.right,key);}if(key<root.val){root.left =  deleteNode(root.left,key);}return root;

题目代码

class Solution {public TreeNode deleteNode(TreeNode root, int key) {if(root == null){return null;}if(root.val == key){if(root.left == null && root.right == null){return  null;}else if(root.left != null && root.right == null){return root.left;}else if(root.right != null && root.left == null){return root.right;}else {TreeNode cur = root.right;while (cur.left != null) {cur = cur.left;}cur.left = root.left;root = root.right;return root;}}if(root.val<key){root.right =  deleteNode(root.right,key);}if(key<root.val){root.left =  deleteNode(root.left,key);}return root;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/133852.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue-1.9工程化开发和脚手架

开发Vue的两种方式&#xff1a; 1.核心包传统开发模式&#xff1a;基于html/css/js文件&#xff0c;直接引入核心包&#xff0c;开发Vue 2.工程化开发模式&#xff1a;基于构建工具&#xff08;例如&#xff1a;webpack&#xff09;的环境中开发Vue 问题&#xff1a; 1&…

论文导读|八月下旬Operations Research文章精选:定价问题专题

编者按&#xff1a; ​ ​在“ Operations Research论文精选”中&#xff0c;我们有主题、有针对性地选择了Operations Research中一些有趣的文章&#xff0c;不仅对文章的内容进行了概括与点评&#xff0c;而且也对文章的结构进行了梳理&#xff0c;旨在激发广大读者的阅读兴…

python opencv 深度学习 指纹识别算法实现 计算机竞赛

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; python opencv 深度学习 指纹识别算法实现 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;4分创新点&#xff1a;4分 该项目较为新颖…

MySQL使用函数、存储过程实现:向数据表快速插入大量测试数据

实现数据表快速插入20W测试数据 实现过程创建表开启允许创建函数生成随机字符串生成随机整数生成随机地址创建存储过程调用存储过程查看插入数据 其他实用函数生成随机浮点数生成随机日期时间生成随机布尔值生成随机姓名生成随机手机号码生成随机邮箱地址生成随机IP地址生成随机…

【Unity】【VR】详解Oculus Integration输入

【背景】 以下内容适用于Oculus Integration开发VR场景,也就是OVR打头的Scripts,不适用于OpenXR开发场景,也就是XR打头Scripts。 【详解】 OVR的Input相对比较容易获取。重点在于区分不同动作机制的细节效果。 OVR Input的按键存在Button和RawButton两个系列 RawButton…

力扣164最大间距

1.前言 因为昨天写了一个基数排序&#xff0c;今天我来写一道用基数排序实现的题解&#xff0c;希望可以帮助你理解基数排序。 这个题本身不难&#xff0c;就是线性时间和线性额外空间(O(n))的算法&#xff0c;有点难实现 基数排序的时间复杂度是O(d*(nradix))&#xff0c;其中…

Unity官方文档中关于内存管理的翻译(2021.3)

原文:Memory in Unity - Unity 手册 Unity内存管理 为了确保您的应用程序运行时没有性能问题&#xff0c;了解Unity如何使用和分配内存非常重要。本文档的这一部分解释了Unity中内存是如何工作的&#xff0c;适用于希望了解如何提高应用程序内存性能的读者。 Unity使用三个内…

Blender:对模型着色

Blender&#xff1a;使用立方体制作动漫头像-CSDN博客 上一步已经做了一个头像模型&#xff0c;我做的太丑了&#xff0c;就以这个外星人头像为例 首先切换到着色器编辑器 依次搜索&#xff1a;纹理坐标、映射、分离xyz和颜色渐变 这里的功能也是非常丰富和强大&#xff0c…

TCPUDP

TCP 1.什么是TCP TCP是处于运输层的通信协议&#xff0c;该协议能够实现数据的可靠性传输。 2.TCP报文格式 源端口和目的端口&#xff1a;各占两个字节&#xff0c;发送进程的端口和接收进程的端口号。 序号&#xff1a;占4个字节,序号如果增加到溢出&#xff0c;则下一个序…

【数据结构】归并排序和计数排序(排序的总结)

目录 一&#xff0c;归并排序的递归 二&#xff0c;归并排序的非递归 三&#xff0c;计数排序 四&#xff0c;排序算法的综合分析 一&#xff0c;归并排序的递归 基本思想&#xff1a; 归并采用的是分治思想&#xff0c;是分治法的一个经典的运用。该算法先将原数据进行拆…

解读提示工程(Prompt Engineering)

提示工程&#xff08;Prompt Engineering&#xff09;&#xff0c;也称为上下文提示&#xff0c;是一种通过不更新模型的权重/参数来引导LLM行为朝着特定结果的方法。这是与AI有效交流所需结果的过程。提示工程可以用于各种任务&#xff0c;从回答问题到算术推理乃至各种应用领…