【CEEMDAN-WOA-LSTM】完备集合经验模态分解-鲸鱼优化-长短时记忆神经网络研究(Python代码实现)

 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

1.1 完备集合经验模态分解原理

1.2 鲸鱼优化

1.3 LSTM

📚2 运行结果

🎉3 参考文献

🌈4 Python代码实现


💥1 概述

1.1 完备集合经验模态分解原理

早期的 EMD 方法具有较强的自适应性,能够有效地分解时间序列;但是,算法在运算过程中

容易出现模态混叠现象。EEMD 分解方法的思想是:在原始信号中加入白噪声[16],使极值点分布更均衡;最终分量在EMD 的基础上进行集成平均而得。但是,这种方法具有计算量大且重构时残留噪音大的缺陷。CEEMDAN 是 EEMD 的改进算法。该算法通过添加有限次数的自适应白噪声,解决了集合平均次数限制下的重构误差较大的问题。

1.2 鲸鱼优化

座头鲸有特殊的捕猎方法,这种觅食行为被称为泡泡网觅食法;标准 WOA 模拟了座头鲸特有的搜索方法和围捕机制,主要包括:围捕猎物、气泡网捕食、搜索猎物三个重要阶段。WOA 中每个座头鲸的位置代表一个潜在解,通过在解空间中不断更新鲸鱼的位置,最终获得全局最优解。

1.3 LSTM

长短时记忆( long-short term memory,LSTM) 神经网络是 Hochreiter 等提出的一种改进后的循环式神经网络,可有效解决循环式神经网络存在的梯度爆炸和阶段性梯度消失的问题。在传统

循环式神经网络基础上,在隐含层增设记忆模块,可使信息较长时间地储存和遗传,其结构如图 1

所示。

📚2 运行结果

 

...... 

Epoch 87/100
19/19 [==============================] - 0s 5ms/step - loss: 1.2908e-04 - accuracy: 5.3677e-04 - val_loss: 9.1420e-06 - val_accuracy: 0.0000e+00
Epoch 88/100
19/19 [==============================] - 0s 5ms/step - loss: 1.3659e-04 - accuracy: 5.3677e-04 - val_loss: 2.2255e-06 - val_accuracy: 0.0000e+00
Epoch 89/100
19/19 [==============================] - 0s 5ms/step - loss: 1.1987e-04 - accuracy: 5.3677e-04 - val_loss: 3.4974e-05 - val_accuracy: 0.0000e+00
Epoch 90/100
19/19 [==============================] - 0s 5ms/step - loss: 1.2746e-04 - accuracy: 5.3677e-04 - val_loss: 9.6258e-05 - val_accuracy: 0.0000e+00
Epoch 91/100
19/19 [==============================] - 0s 5ms/step - loss: 1.2758e-04 - accuracy: 5.3677e-04 - val_loss: 9.1996e-05 - val_accuracy: 0.0000e+00
Epoch 92/100
19/19 [==============================] - 0s 5ms/step - loss: 1.5623e-04 - accuracy: 5.3677e-04 - val_loss: 1.8761e-05 - val_accuracy: 0.0000e+00
Epoch 93/100
19/19 [==============================] - 0s 6ms/step - loss: 1.4421e-04 - accuracy: 5.3677e-04 - val_loss: 3.0035e-06 - val_accuracy: 0.0000e+00
 

Epoch 94/100
19/19 [==============================] - 0s 5ms/step - loss: 1.4949e-04 - accuracy: 5.3677e-04 - val_loss: 2.6891e-04 - val_accuracy: 0.0000e+00
Epoch 95/100
19/19 [==============================] - 0s 5ms/step - loss: 1.2961e-04 - accuracy: 5.3677e-04 - val_loss: 2.1525e-05 - val_accuracy: 0.0000e+00
Epoch 96/100
19/19 [==============================] - 0s 5ms/step - loss: 1.2142e-04 - accuracy: 5.3677e-04 - val_loss: 3.6751e-05 - val_accuracy: 0.0000e+00
Epoch 97/100
19/19 [==============================] - 0s 5ms/step - loss: 1.3616e-04 - accuracy: 5.3677e-04 - val_loss: 8.5641e-07 - val_accuracy: 0.0000e+00
Epoch 98/100
19/19 [==============================] - 0s 6ms/step - loss: 1.2854e-04 - accuracy: 5.3677e-04 - val_loss: 1.4613e-04 - val_accuracy: 0.0000e+00
Epoch 99/100
19/19 [==============================] - 0s 5ms/step - loss: 1.4222e-04 - accuracy: 5.3677e-04 - val_loss: 1.1871e-04 - val_accuracy: 0.0000e+00
Epoch 100/100
19/19 [==============================] - 0s 6ms/step - loss: 1.7137e-04 - accuracy: 5.3677e-04 - val_loss: 2.4105e-06 - val_accuracy: 0.0000e+00
65/65 [==============================] - 0s 1ms/step
16/16 [==============================] - 0s 1ms/step

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]金子皓,向玲,李林春,胡爱军.基于完备集合经验模态分解的SE-BiGRU超短期风速预测[J].电力科学与工程,2023,39(01):9-16.

[2]蒋富康,陆金桂,刘明昊,丰宇.基于CEEMDAN和CNN-LSTM的滚动轴承故障诊断[J].电子测量技术,2023,46(05):72-77.DOI:10.19651/j.cnki.emt.2210775.

🌈4 Python代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/13422.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MATLAB 之 可视化图形用户界面设计

这里写目录标题 一、可视化图形用户界面设计1. 图形用户界面设计窗口1.1 图形用户界面设计模板1.2 图形用户界面设计窗口 2. 可视化图形用户界面设计工具1.1 对象属性检查器2.2 菜单编辑器2.3 工具栏编辑器2.4 对齐对象工具2.5 对象浏览器2.6 Tab 键顺序编辑器 3. 可视化图形用…

[毕业设计baseline]tkinter+flask的毕业设计开发baseline

一.前言 最近开发了一个结合了tkinter和flask框架的GUI页面服务器。目前可以想到的开发方向有。 1.基于python的局域网聊天系统。 2.服务器管理系统。 3.网络安全防御系统。 接下来就来介绍一下这个框架以及开发方向的详细思路。如果计算机专业的本科毕业生感兴趣可以用pyt…

基于单片机的蓝牙音乐喷泉的设计与实现

功能介绍 以51单片机作为主控系统;通过HM-18蓝牙音频模块进行无线传输; 通过LM386功放模块对音频信号进行放大;手机端可以直接控制音频播放,并且最远距离可达20米;手机端可以进行任意音乐切换,播报、暂停&a…

记一次阿里云被挖矿处理记录

摘要 莫名其妙的服务器就被攻击了,又被薅了羊毛,当做免费的挖矿劳动力了。 一、起因 上班(摸鱼)好好的,突然收到一条阿里云的推送短信,不看不知道,两台服务器被拉去作为苦力,挖矿去…

具备捕获 Web2 用户能力的 PoseiSwap,治理通证$POSE再度涨超 360%

Nautilus Chain 是行业内首个模块化 Layer3 架构链,开发者能够基于模块化进行定制化开发,并有望进一步推动 Web3 应用向隐私、合规等方向发展。当然,Nautilus Chain 的特殊之处还在于为生态用户带来丰厚的空投预期,据悉上线 Nauti…

android Surface(1, 2)

android Surface(1, 2) android的Surface相关内容从底层依次往上分别是: 1.frameBuffer,简称fb,对于同一个android系统,可以同时存在多个frameBuffer,本机是fb0,依次外接时,fb1, fb2, ……fbn…

安全漏洞的检测利用

安全漏洞的检测&利用 一、安全漏洞的基本概念1.1、什么是漏洞1.2、漏洞的简单理解1.3、微软的RPC漏洞与蠕虫病毒1.4、微软经典的蓝屏漏洞1.5、Heartbleed(心脏滴血)漏洞1.6、破壳漏洞CVE-2014-62711.7、漏洞的危害1.8、漏洞的成因1.9、漏洞的信息的组…

electron+vue3全家桶+vite项目搭建【21】自定义窗口拖拽移动

引入 如果你尝试过透明窗口,并控制透明部分事件击穿,就会发现使用 drag属性样式去控制窗口拖拽会导致点击事件失效,并且带drag属性的窗口移动到另一个窗口的透明部分会有窗口乱动的各种BUG,于是,这便需要我们自己去实…

mac上 如何批量在文件名后加相同的文字?

mac上如何批量在文件名后加相同的文字?不管你是使用windows电脑还是使用mac电脑,很多小伙伴都会在电脑上进行文件批量重命名的操作,不过这项操作对于使用windows系统电脑的小伙伴来说会简单一些,因为在网上可以搜索到很多这样的教…

软考:中级软件设计师:计算机体系结构,CISC和RISC,Flynn分类,指令流水线,吞吐率,效率

软考:中级软件设计师:计算机体系结构 提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性 关于互联网大厂的笔试面试,都是需要细心准备的…

LabVIEW开发X射线图像增强

LabVIEW开发X射线图像增强 X射线图像在临床诊断中起着重要作用。但是,由于各种原因,例如不均匀,低照度条件和一些噪点,图像质量通常不是很好。因此有必要增强这些图像,以方便后续处理或诊断。模糊集论是开发图像处理中…

SpringBoot第19讲:SpringBoot 如何保证接口幂等

SpringBoot第19讲:SpringBoot 如何保证接口幂等 在以SpringBoot开发Restful接口时,如何防止接口的重复提交呢? 本文是SpringBoot第19讲,主要介绍接口幂等相关的知识点,并实践常见基于Token实现接口幂等。 文章目录 Spr…