基于JAYA优化的BP神经网络(分类应用) - 附代码

基于JAYA优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于JAYA优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.JAYA优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 JAYA算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用JAYA算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.JAYA优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 JAYA算法应用

JAYA算法原理请参考:https://blog.csdn.net/u011835903/article/details/115572600

JAYA算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从JAYA算法的收敛曲线可以看到,整体误差是不断下降的,说明JAYA算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/138476.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BUUCTF学习(5): 命令执行Ping

1、介绍 2、解题 127.0.0.1|cat /flag 结束

基于梯度优化的BP神经网络(分类应用) - 附代码

基于梯度优化的BP神经网络(分类应用) - 附代码 文章目录 基于梯度优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.梯度优化BP神经网络3.1 BP神经网络参数设置3.2 梯度算法应用 4.测试结果:5.M…

Godot C# 扩展方法持续更新

前言 为了简化Godot 的编写&#xff0c;我会将我的扩展方法写在这里面。 更新日期(2023年10月15日) Nuget 包安装 扩展方法 public static class GD_Extension{/// <summary>/// 假数据生成&#xff0c;详情请看Bogus官方文档/// </summary>public static Faker…

离线 notepad++ 添加到右键菜单

复制下面代码&#xff0c;修改文件后缀名为&#xff1a;reg Windows Registry Editor Version 5.00[HKEY_CLASSES_ROOT\*\shell\NotePad] "Notepad" "Icon""D:\\Notepad\\notepad.exe,0"[HKEY_CLASSES_ROOT\*\shell\NotePad\Command] "D:\…

基于混沌博弈优化的BP神经网络(分类应用) - 附代码

基于混沌博弈优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于混沌博弈优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.混沌博弈优化BP神经网络3.1 BP神经网络参数设置3.2 混沌博弈算法应用 4.测试结果…

基于五折交叉验证的支持向量机SVR回归预测研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

网络安全—小白自学笔记

1.网络安全是什么 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 2.网络安全市场 一、是市场需求量高&#xff1b; 二、则是发展相对成熟…

铅华洗尽,粉黛不施,人工智能AI基于ProPainter技术去除图片以及视频水印(Python3.10)

视频以及图片修复技术是一项具有挑战性的AI视觉任务&#xff0c;它涉及在视频或者图片序列中填补缺失或损坏的区域&#xff0c;同时保持空间和时间的连贯性。该技术在视频补全、对象移除、视频恢复等领域有广泛应用。近年来&#xff0c;两种突出的方案在视频修复中崭露头角&…

Nginx的安装——Linux环境

1、安装gcc nginx源码的编译依赖于gcc 环境&#xff0c;如果没有 gcc 环境&#xff0c;则需要安装&#xff1a; yum install gcc-c 2、PCRE pcre-devel 安装 PCRE(Perl Compatible Regular Expressions) 是一个Perl库&#xff0c;包括 perl 兼容的正则表达式库。nginx 的 htt…

Vue检测数据的原理

Vue能够对用户的数据进行响应式&#xff0c;也就是你在data中写了什么&#xff0c;你在模板中用到data的部分就会渲染成什么&#xff0c;那么Vue是怎么知道用户修改了data中的数据变化并对模板重新进行解析的呢&#xff1f; 在Vue将数据存储为自身的_data之前&#xff0c;Vue会…

ubuntu20.04下Kafka安装部署及基础使用

Ubuntu安装kafka基础使用 kafka 安装环境基础安装下载kafka解压文件修改配置文件启动kafka创建主题查看主题发送消息接收消息 工具测试kafka Assistant 工具连接测试基础连接连接成功查看topic查看消息查看分区查看消费组 Idea 工具测试基础信息配置信息当前消费组发送消息消费…

数据挖掘十大算法--Apriori算法

一、Apriori 算法概述 Apriori 算法是一种用于关联规则挖掘的经典算法。它用于在大规模数据集中发现频繁项集&#xff0c;进而生成关联规则。关联规则揭示了数据集中项之间的关联关系&#xff0c;常被用于市场篮分析、推荐系统等应用。 以下是 Apriori 算法的基本概述&#x…