如何绘制【逻辑回归】中threshold参数的学习曲线

threshold参数的意义是通过筛选掉低于threshold的参数,来对逻辑回归的特征进行降维。

首先导入相应的模块:

from sklearn.linear_model import LogisticRegression as LR
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import numpy as np
from sklearn.feature_selection import SelectFromModel # 从模型中选择特征
from sklearn.model_selection import cross_val_score # 交叉验证

导入乳腺癌数据集:

data = load_breast_cancer()
x = data.data
y = data.target

查看数据集特征矩阵的情况:

data.data.shape # (569, 30)

这个时候有30个特征。实例化一个逻辑回归模型,并使用交叉验证评估模型性能:

LR_ = LR(solver="liblinear", C=0.8, random_state=420)
cross_val_score(LR_, x, y, cv=10).mean() # 0.9508145363408522

使用select_from_model函数根据模型的权重系数或特征重要性等信息,选择重要的特征,并将选择后的特征矩阵返回给x_embedded:

X_embedded = SelectFromModel(LR_, threshold = 0.8, norm_order=1).fit_transform(x, y) # norm_order=1表示L1正则,模型会删除L1正则化后系数为0的特征,threshold表示阈值,当特征的系数小于阈值时,删除该特征
X_embedded.shape # (569, 9)

可以发现现在特征只剩下9个了。在这里我们设置了threshold = 0.8,也就是说小于0.8的权重系数被删除掉了。但是我们怎么知道设置哪个threshold值后得到的特征矩阵去训练模型,会得到最优的模型效果呢?

接下来我们开始绘制threshold的学习曲线,也就是不同的threshold值对模型效果的影响。在绘制之前,我们先训练模型,看一下权重系数的最大值,找到threshold的取值范围:

# 画threshod的学习曲线
LR_.fit(x, y) # 训练模型
LR_.coef_ # 查看训练后各变量的系数
LR_.coef_.shape # (1, 30)
LR_.coef_.max() # 1.9376881066687164

为了对比特征选择前和选择后模型的效果,我们设置了一组对照,同时确定了threshold的取值范围:

fullx = [] # 创建特征选择前的交叉验证的空列表
fsx = [] # 创建特征选择后的交叉验证的空列表
threshold = np.linspace(0, abs(LR_.fit(x, y).coef_).max(), 20) # 从0到最大系数之间取20个数

接下来绘制函数图像:

k = 0
for i in threshold:x_embedded = SelectFromModel(LR_, threshold=i).fit_transform(x, y) # threshold表示阈值,当特征的系数小于阈值时,删除该特征。此行代码是形成新的特征矩阵fullx.append(cross_val_score(LR_, x, y, cv=5).mean()) # 特征选择前进行交叉验证fsx.append(cross_val_score(LR_, x_embedded, y, cv=5).mean()) # 特征选择后进行交叉验证print((threshold[k], x_embedded.shape[1])) # 打印每次循环取到的阈值和降维后的特征数k += 1
plt.figure(figsize=(20, 5))
plt.plot(threshold, fullx, label="full")
plt.plot(threshold, fsx, label="feature selection")
plt.xticks(threshold)
plt.legend()
plt.show()

结果如下:

由图可知,随着threshold的值逐渐变大,被删除的特征越多,模型效果越差。这不是我们想要的结果,因此我们将范围缩小,将threshold的取值范围缩小(0,0.1),再来跑一下模型:

fullx = [] # 创建特征选择前的交叉验证的空列表
fsx = [] # 创建特征选择后的交叉验证的空列表
threshold = np.linspace(0, 0.1, 20) # 从0到最大系数之间取20个数
k = 0
for i in threshold:x_embedded = SelectFromModel(LR_, threshold=i).fit_transform(x, y) # threshold表示阈值,当特征的系数小于阈值时,删除该特征。此行代码是形成新的特征矩阵fullx.append(cross_val_score(LR_, x, y, cv=5).mean()) # 特征选择前进行交叉验证fsx.append(cross_val_score(LR_, x_embedded, y, cv=5).mean()) # 特征选择后进行交叉验证print((threshold[k], x_embedded.shape[1])) # 打印每次循环取到的阈值和降维后的特征数k += 1
plt.figure(figsize=(20, 5))
plt.plot(threshold, fullx, label="full")
plt.plot(threshold, fsx, label="feature selection")
plt.xticks(threshold)
plt.legend()
plt.show()

结果如下:

可以发现,当threshold取0.0053时,模型可以获得最好的效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/150663.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt之自定义QStringListModel设置背景色和前景色

一.效果 二.实现 QStringListModel里只实现了Qt::EditRole和Qt::DisplayRole,不能直接设置背景色和前景色,所以我们要继承QStringListModel,重写其中的data和setData方法,使其支持Qt::ForegroundRole和Qt::BackgroundRole。 QHStringListModel.h #ifndef QHSTRINGLISTMO…

微信小程序设计之主体文件app-ts/js

一、新建一个项目 首先,下载微信小程序开发工具,具体下载方式可以参考文章《微信小程序开发者工具下载》。 然后,注册小程序账号,具体注册方法,可以参考文章《微信小程序个人账号申请和配置详细教程》。 在得到了测…

数据结构—线性表(下)

文章目录 6.线性表(下)(4).栈与队列的定义和ADT#1.ADT#2.栈的基本实现#3.队列的形式#4.队列的几种实现 (5).栈与队列的应用#1.栈的应用i.后缀表达式求值ii.中缀表达式转后缀表达式 #2.队列的应用 (6).线性表的其他存储方式#1.索引存储#2.哈希存储i.什么是哈希存储ii.碰撞了怎么…

大数据Flink(一百零二):SQL 聚合函数(Aggregate Function)

文章目录 SQL 聚合函数(Aggregate Function) SQL 聚合函数(Aggregate Function) Python UDAF,即 Python AggregateFunction。Python UDAF 用来针对一组数据进行聚合运算,比如同一个 window 下的多条数据、或者同一个 key 下的多条数据等。针对同一组输入数据,Python A…

33基于MATLAB的对RGB图像实现中值滤波,均值滤波,维纳滤波。程序已通过调试,可直接运行。

基于MATLAB的对RGB图像实现中值滤波,均值滤波,维纳滤波。程序已通过调试,可直接运行。 33 MATLAB、图像处理、维纳滤波 (xiaohongshu.com)

idea 基础设置

1、设置 IDEA 主题 2、自动导包和优化多余的包 3、同一个包下的类,超过指定个数的时候,导包合并为* 4、显示行号 , 方法和方法间的分隔符: 5、忽略大小写,进行提示 6、多个类不隐藏,多行显示 7、设置默认的…

设计模式(12)状态模式

参考【设计模式】用Java实现状态模式_java 状态模式_卷帘的博客-CSDN博客 一、介绍: 1、状态模式:是一种行为设计模式,它允许对象在内部状态发生改变时改变其行为。该模式将对象的行为包装在不同的状态类中,使得对象的行为可以根…

利用Nginx通过内网穿透实现Windows Web多站点远程访问

文章目录 1. 下载windows版Nginx2. 配置Nginx3. 测试局域网访问4. cpolar内网穿透5. 测试公网访问6. 配置固定二级子域名7. 测试访问公网固定二级子域名 1. 下载windows版Nginx 进入官方网站(http://nginx.org/en/download.html)下载windows版的nginx 下载好后解压进入nginx目…

threejs(4)-纹理材质高级操作

一、纹理重复_缩放_旋转_位移操作 // 导入threejs import * as THREE from "three"; // 导入轨道控制器 import { OrbitControls } from "three/examples/jsm/controls/OrbitControls.js"; // 导入lil.gui import { GUI } from "three/examples/jsm/l…

软考高级系统架构师冲关预测

[ – 2023年10月27日 – ] 去年11月通过了软考高级系统架构师的考试,原本想立即分享下过关的总结回顾,但是随着软考新版大纲及教程的发布,也意味着题目及内容的复盘总结经验便不那么适用。在即将迎来今年的软考高架的时候,想着透…

取Dataset子集(pytorch)

取Dataset子集--pytorch 1. why2. how3. example 1. why 我们在调试深度学习代码时,常常会遇到数据集太大,导致调试浪费时间的情况,这种情况下,将数据集中的一个子集拿出来用于调试代码,调试成功在用完整的数据集运行…

51单片机汽车胎压大气气压测量仪仿真设计_数码管显示(代码+仿真+设计报告+讲解)

51单片机汽车胎压大气气压测量仪仿真设计_数码管显示 (代码仿真设计报告讲解) 仿真原版本:proteus 7.8 程序编译器:keil 4/keil 5 编程语言:C语言 设计编号:S0018 目录 51单片机汽车胎压大气气压测量仪仿真设计_数码管显示功…