【随机过程】布朗运动

这里写目录标题

  • Brownian motion

Brownian motion

The brownian motion 1D and brownian motion 2D functions, written with the cumsum command and without for loops, are used to generate a one-dimensional and two-dimensional Brownian motion, respectively.
使用cumsum命令编写的布朗运动1D函数和不带for循环的布朗运动2D函数分别生成一维和二维布朗运动。

These Wiener processes are characterized by normal-centered increments with variance h, where h is the time increment, generated by the command randn(1,n)*sqrt(h).
这些维纳过程的特征是方差为h的正态中心增量,其中h是时间增量,由命令randn(1,n)*sqrt(h)生成。

We consider a time interval T = 1000, divided into n = 1000 increments of value h = 1.
我们考虑一个时间间隔T = 1000,分成n = 1000个值h = 1的增量。

Figure1 shows, for example, two trajectories W(t) of a one-dimensional Wiener process.
例如,图1显示了一维维纳过程的两条轨迹W(t)。

在这里插入图片描述Figure 1 { Two examples of trajectories as a function of the time t of a Wiener process W(t) in one
dimension.
图1{两个关于一维维纳过程W(t)时间t的轨迹函数的例子。

Figure 2,on the other hand, shows two examples of a two-dimensional Brownian motion trajectory, this time as a function of the X and Y spatial coordinates.
另一方面,图2显示了两个二维布朗运动轨迹的例子,这一次是X和Y空间坐标的函数。

在这里插入图片描述
Figure 2 -Two examples of trajectories of a two dimensional Wiener process in the plane XY .
图2-在XY平面上二维维纳过程的轨迹的两个例子。

Given N (number of steps), M (number of trajectories) and T (maximum of the time interval),
we generate a matrix W all containing M trajectories of the Brownian motion in one dimension
on the interval [0; T] with a discretization step h = T=N.
给定N(步数),M(轨迹数)和T(时间间隔的最大值),我们生成一个矩阵W,其中包含布朗运动在一维中的M个轨迹,在区间[0;T],离散步长h = T=N。

Figure 3 shows M = 10; 100; 1000 trajectories over the interval [0; 10] with N = 1000 steps.
图3显示M = 10;100;在区间[0;10] N = 1000步。

在这里插入图片描述
Figure 3 { M = 10; 100; 1000 (from left to right) trajectories of a one-dimensional Wiener process
over the time interval [0; 10] with N = 1000 discretisation steps.
图3 {M = 10;100;1000个(从左到右)一维维纳过程在时间区间[0;10], N = 1000离散步长。

We simulate M = 1000 trajectories over the interval [0; 10]. Figure 4 shows the mean and
the variance over time of these trajectories.
我们在区间[0;10]。图4显示了这些轨迹随时间的平均值和方差。

在这里插入图片描述
Figure 4 { Mean and variance of M = 1000 trajectories of a Brownian motion in one dimension.
图4 {M = 1000条布朗运动轨迹在一维中的均值和方差。

In contrast, figure 5 shows the expectation valuesE[W(t)], E[W(t)2] et E[W(t)4] obtained numerically as a function of time.
与此相反,图5给出了期望值E[W(t)]、E[W(t) 2]和E[W(t) 4]作为时间函数的数值计算结果。

The first moment corresponds exactly to the average.
第一个力矩正好对应于平均值。

In the presence of a zero mean, the variance is equivalent to the moment E[W(t)2].
在均值为零的情况下,方差等于矩E[W(t) 2]。

The red lines in each panel of Figure 5 show that the equalities E[W(t)] = 0, E[W(t)2] = t, and E[W(t)4] = 3t2 are satisfied.
图5中每个面板中的红线表示满足等式E[W(t)] = 0、E[W(t) 2] = t和E[W(t) 4] = 3t 2。

在这里插入图片描述Figure 5 { Expectation values E[W(t)], E[W(t)2] and E[W(t)4] calculated numerically and compared with the curves (in red) expected theoretically.
图5{数值计算的期望值E[W(t)]、E[W(t) 2]、E[W(t) 4]与理论期望曲线(红色)对比。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/151101.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

主动调度是如何发生的

计算机主要处理计算、网络、存储三个方面。计算主要是 CPU 和内存的合作;网络和存储则多是和外部设备的合作;在操作外部设备的时候,往往需要让出 CPU,就像上面两段代码一样,选择调用 schedule() 函数。 上下文切换主要…

Stable Diffusion WebUI linux部署问题

当我部署好环境后,准备大张旗鼓开搞时,进入项目地址运行python launch.py后发现 下面连接着的报错是 OSError: Cant load tokenizer for openai/clip-vit-large-patch14. If you were trying to load it from https://huggingface.co/models, make sure…

演讲比赛常见误区及解决方法

演讲比赛常见误区及解决方法 一、演讲内容选择错误 1. 主题选择不合理 许多参赛者选择的主题内容,与比赛题目要求或听众背景不符,难以引起听众的兴趣。正确选择主题应考虑以下几点: - 主题应与比赛题目要求相符合,切合比赛定位…

微信小程序 slot 不显示

问题:创建组件&#xff0c;使用带名字的slot&#xff0c;页面调用组件使用slot不显示 源码&#xff1a; 组件xml <view class"p-item br24" style"{{style}}"><slot name"right" wx:if"{{!custBottom}}"></slot>&l…

C++类模板再学习

之前已经学习了C类模板&#xff1b;类模板的写法和一般类的写法有很大的差别&#xff1b;不容易熟悉&#xff1b;下面再做一遍&#xff1b; 做一个椭圆类&#xff0c;成员有长轴长度和短轴长度&#xff1b; // ellipse.h: interface for the ellipse class. // //#if !define…

Fourier分析导论——第1章——Fourier分析的起源(E.M. Stein R. Shakarchi)

第 1 章 Fourier分析的起源 (The Genesis of Fourier Analysis) Regarding the researches of dAlembert and Euler could one not add that if they knew this expansion, they made but a very imperfect use of it. They were both persuaded that an arbitrary and d…

mac 查看GPU使用

首先搜索活动监视器 然后 点击窗口->gpu历史记录 记住不是立马出结果&#xff0c;而是 需要等半分钟左右的

如何查找特定基因集合免疫基因集 炎症基因集

温故而知新&#xff0c;再次看下Msigdb数据库。它更新了很多内容。给我们提供了一个查询基因集的地方。 关注微信&#xff1a;生信小博士 比如纤维化基因集&#xff1a; 打开网址&#xff1a;https://www.gsea-msigdb.org/gsea/msigdb/index.jsp 2.点击search 3.比如我对纤维…

【Linux】Ubuntu升级nodejs版本

在下载nvm对nodejs版本进行管理时&#xff0c;由于网络因素一直下载失败&#xff0c;于是采用了新的方法对nodejs版本进行升级。 首先我们先查询一下现存的nodejs版本号&#xff0c;发现是12 我们下载一个名为n的软件包&#xff0c;n 是一个非常方便的 Node.js 版本管理工具&am…

Linux中shell脚本中的变量

目录 一、变量的定义 二、shell脚本中变量的定义方法 1、变量名称 2、环境级别 3、用户级别 4、系统级别 5、删除设定的变量 三、变量的转译 1、转译 2、声明 3、变量的数组 四、Linux中命令的别名设定 五、用户环境变量的更改 脚本中的传参 1、非交互模式 2…

sharepoint2016-2019升级到sharepoint订阅版

一、升级前准备&#xff1a; 要建立新的sharepoint订阅版环境&#xff0c;需求如下&#xff1a; 1.单服务器硬件需求CPU 4核&#xff0c;内存24G以上&#xff0c;硬盘300G&#xff08;根据要迁移的数量来扩容大小等&#xff09;&#xff1b; 2.操作系统需要windows server 20…

Python----break关键字对while...else结构的影响

案例&#xff1a; 女朋友生气&#xff0c;要求道歉5遍&#xff1a;老婆大人&#xff0c;我错了。道歉到第三遍的时候&#xff0c;媳妇埋怨这一遍说的不真诚&#xff0c;是不是就是要退出循环了&#xff1f;这个退出有两种可能性&#xff1a; ① 更生气&#xff0c;不打算原谅…