文章目录
- 前言
- 一、NumPy基础训练
- 1.1 创建一个长度为10的一维全为0的ndarray对象,并让第5个元素为1
- 1.2 创建一个元素为从10到49的ndarray对象
- 1.3 将第2题的所有元素位置反转
- 1.4 创建一个10*10的ndarray对象并打印最大最小元素
- 1.5 创建一个10*10的ndarray对象,且矩阵边界全为1,里面全为0
- 1.6 创建一个每一行都是从0到4的5*5矩阵
- 1.7 创建一个范围在0-1之间的长度为12的等差数列
- 1.8 创建一个长度为10的随机数组并排序
- 1.9 创建一个长度为10的随机数组并将最大值替换为0
- 二、NumPy强化训练
- 2.1 给定一个4维矩阵,求最后两维的和
- 2.2 给定数组[1,2,3,4,5],在每个元素后插入3个0
- 2.3 给定一个二维矩阵,交换其中两行元素
- 2.4 创建一个长度为100000的随机数组,使用两种方法求3次方,并比较所用时间
- 2.5 创建一个5 * 3的随机矩阵和一个3 * 2的随机矩阵,求矩阵积
- 2.6 矩阵每一行的元素都减去该行的平均值
- 2.7 打印如下矩阵
- 2.8 正则化一个5*5随机矩阵
- 结语
- 相关导读
前言
大家好!我是初心,本期给大家带来的是 NumPy案例巩固强化练习题,共17道,亲测。
一、NumPy基础训练
1.1 创建一个长度为10的一维全为0的ndarray对象,并让第5个元素为1
n1 = np.zeros(10,dtype=np.int16)
n1[4] = 1
n1
1.2 创建一个元素为从10到49的ndarray对象
n2 = np.arange(10,50)
n2
1.3 将第2题的所有元素位置反转
n2[::-1]
1.4 创建一个10*10的ndarray对象并打印最大最小元素
n4 = np.random.random((10,10))
print(np.max(n4))
print(np.min(n4))
1.5 创建一个10*10的ndarray对象,且矩阵边界全为1,里面全为0
n5 = np.zeros((10,10),dtype=np.int16)
n5[[0,9]] = 1
n5[:,[0,9]] = 1
print(n5)
1.6 创建一个每一行都是从0到4的5*5矩阵
n6 = np.array(range(0,5))
n6
1.7 创建一个范围在0-1之间的长度为12的等差数列
n7 = np.linspace(0,1,num=12)
n7
1.8 创建一个长度为10的随机数组并排序
n8 = np.random.random(10)
np.sort(n8)
1.9 创建一个长度为10的随机数组并将最大值替换为0
n9 = np.random.random(10)
n9[np.argmax(n9)] = 0
print(n9)
二、NumPy强化训练
2.1 给定一个4维矩阵,求最后两维的和
n1 = np.random.randint(1,10,(2,3,4,5)) # 四维数组
display(n1)
np.sum(n1,(2,3))
# axis = 0 表示第一个维度
# axis = 1 表示第二个维度
# axis = 2 表示第三个维度
# axis = 3 表示第四个维度
2.2 给定数组[1,2,3,4,5],在每个元素后插入3个0
n = np.arange(1,6)
display(n)
n2 = np.zeros(17,dtype=np.int16)
display(n2)
n2[::4] = n
n2
2.3 给定一个二维矩阵,交换其中两行元素
n = np.random.randint(1,10,(3,3))
display(n)
n = n[[1,0,2]] # 交换第一行和第二行
display(n)
2.4 创建一个长度为100000的随机数组,使用两种方法求3次方,并比较所用时间
n = np.random.randint(0,10,100000)
%timeit n ** 3
%timeit np.power(n,3)
2.5 创建一个5 * 3的随机矩阵和一个3 * 2的随机矩阵,求矩阵积
n1 = np.random.randint(0,10,(5,3))
n2 = np.random.randint(0,10,(3,2))
display(n1,n2)
np.dot(n1,n2)
2.6 矩阵每一行的元素都减去该行的平均值
n = np.random.randint(0,10,(3,4))
display(n)
# 行平均值
n2 = np.mean(n,axis=1).reshape(3,1)
display(n2)
n - n2
2.7 打印如下矩阵
n = np.zeros((8,8),dtype = np.int16)
display(n)
n[::2,1::2] = 1
n[1::2,0::2] = 1
display(n)
2.8 正则化一个5*5随机矩阵
n = np.random.randint(0,10,(5,5))
display(n)
min1 = np.min(n)
max1 = np.max(n)
n = (n - min1) / (max1 - min1)
display(n)
注:题目素材来自 ——《千锋教育》
结语
本期跟大家分享的就是这些题目了!希望大家可以多多实操练习,加强巩固,以便更好的掌握 NumPy 。
相关导读
文章直达 | 链接 |
---|---|
上期回顾 | 【数据分析 - 基础入门之NumPy⑤】- NumPy基本操作 - 二 |
下期预告 | 【数据分析 - 基础入门之pandas篇①】- pandas基础入门 - 一 |