技术贴 | 深度解析 KaiwuDB 聚焦操作

在这里插入图片描述

一、AST 抽象语法树

执行一条简单的 SQL 语句 SELECT avg(b) FROM NATION GROUP BY b。NATION 是一张小表,只有 25 条记录;对第 2 列 b 进行取平均值的聚集操作。上述示例中的 SQL 语句经过分析器解析后得到 AST,如下图所示。
在这里插入图片描述

二、逻辑计划

将 AST 转换成一个树状结构的 Plan,称之为逻辑查询计划。抽象语法树中的每一个语法元素都被转换成一个查询逻辑单元,例如 scanNode, sortNode, groupNode 等。

例子中的逻辑计划很简单,就是扫描节点(Scan) 和聚集(Group By)。命令 EXPLAIN SELECT avg(b) FROM NATURE GROUP BY b;显示如下:
在这里插入图片描述

三、物理计划

(DistSQLPlanner).PlanAndRun 方法把逻辑计划转换为物理计划,其中递归调用 createPlanForNode 方法生成各个物理算子,交给执行器具体执行。生成物理计划过程是 KaiwuDB 根据底层 KV 数据的分布和预估返回数据集的大小,决定是否需要生成分布式执行计划,该例子为本地执行的物理计划。

在(DistSQLPlanner).PlanAndRun 方法中,逻辑计划会被转换为物理计划,并通过递归调用 createPlanForNode 方法生成各个物理算子,这些算子会被交给执行器具体执行;KaiwuDB 根据底层 KV 数据的分布和预估返回数据集的大小,决定是否需要生成分布式执行计划。

逻辑计划节点和物理计划节点并不是一一对应关系,但是这个例子中,逻辑计划中的 Scan 和 Group 分别对应物理计划中的 TableReader 算子和聚集算子。
在这里插入图片描述
四、执行
最后调用 (DistSQLPlanner).Run 方法执行物理计划。执行引擎采用火山模型(Volcano),每一层执行算子通过调用下一层的 Next 方法获取一条记录。

聚集分为两种情况,具体执行过程如下:

(1)HashAggregater

在 Hash Aggregate 的计算过程中,我们需要维护一个 Hash 表,Hash 表的键为聚合计算的 Group-By 列,若以平均数函数 avg 为例,值为聚合函数的中间结果 sum 和 count。在 Group-By 列 a,求 avg(b) 的例子中,求键为 Group-By 列 b 的值,即 sum(b) 和 count(b)。

计算过程中,只需要根据每行输入数据计算出键,在 Hash 表中找到对应值进行更新即可。


// Next is part of the RowSource interface.
func (ag *hashAggregator) Next() (sqlbase.EncDatumRow, *distsqlpb.ProducerMetadata) {for ag.State == runbase.StateRunning {var row sqlbase.EncDatumRowvar meta *distsqlpb.ProducerMetadataswitch ag.runningState {case aggAccumulating:ag.runningState, row, meta = ag.accumulateRows()case aggEmittingRows:ag.runningState, row, meta = ag.emitRow()default:log.Fatalf(ag.Ctx, "unsupported state: %d", ag.runningState)}if row == nil && meta == nil {continue}return row, meta}return nil, ag.DrainHelper()
}

其中 ag.runningState 为 aggAccumulating:是数据还没有读取完毕,没有算出最终的 agg 结果时的状态,当所有的数据读取完毕后将状态设置为 aggEmittingRows 输出结果。上面的计划就是一个典型的 Hashagg 的例子的逻辑计划。

(2)OrderAggregator 算子

OrderAggregate 的计算需要保证输入数据按照 Group-By 列有序。在计算过程中,每当读到一个新的 Group 的值或所有数据输入完成时,便对前一个 Group 的聚合最终结果进行计算。因为 OrderAggregate 的输入数据需要保证同一个 Group 的数据连续输入,所以 Stream Aggregate 处理完一个 Group 的数据后可以立刻向上返回结果,不用像 HashAggregate 一样需要处理完所有数据后才能正确的对外返回结果。

当上层算子只需要计算部分结果时,比如 Limit,当获取到需要的行数后,可以提前中断 OrderAggregate 后续的无用计算。当 Group-By 列上存在索引时,由索引读入数据可以保证输入数据按照 Group-By 列有序,此时同一个 Group 的数据连续输入 OrderAggregate 算子,可以避免额外的排序操作。如果想要走 Orderagg 则需要将 groupby 列建立索引:create index on nature(b),即可看到计划的转变。

在这里插入图片描述
以下是 Hashagg 和 Orderagg 聚集方法类图:

在这里插入图片描述

五、优化方法

为了提高聚集算子的执行效率,KaiwuDB 提出了如下两种并行聚焦方法:

(1)HashAggregater 并行

HashAggregater 并行的设计思路是并行计算后,将计算后的结果根据计算时产生的中间统计信息直接汇总 Hash,进行 finalworkers 的汇总。HashAggExec 处理所有聚合函数,根据 Aggragator 计划建造,调用 Next()时,从 Src 读取所有数据并更新 partialagfuncs 中的所有项,直到所有 gorutinee 完成。

具体修改思路为在上层 Processor 构建一个 Parallelworker 算子(原来 newAggregator 的地方),让它去构建 newAggregator ,即并行计算的 HashAggregator 子算子,构建几个依据设定好的并发度来构建,让构建好的 newAggregator 取 tablereader 的块去读去算,算好的结果不发送,而是传入管道中。最上层的 Parallelworker 算子遍历各个管道,将得到的所有数据再做一次 HashAggragator。最后再将所有结果发送。

(2)OrderAggregator 算子并行

OrderAggregater 并行的总体设计思路与 HashAggregator 基本相同。但因 OrderAggregator 已经有序,所以分发数据时需要分块按序分配给子算子。将计算后的结果根据计算时产生的中间统计信息直接汇总 Hash,按分配块的顺序直接进行 finalworkers 的汇总。其他部分与 HashAggregator 相同,最后再将所有结果发送。

下图是以 HashAggregator 为例的并行运算流程图:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/155135.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iis前端代理后台tomcat

1)tomcat服务器配置运行好,服务地址位于 localhost:8080/wechat 2)iis 绑定了域名 api.abc.com 希望访问 api.abc.com/wechat时,实际由tomcat的服务处理; 3)iis上需要添加组件 requestRouter_amd64.msi rewrite_amd64_zh-CN.msi 4)iis进行相关配置…

【Unity PlasticSCM】记录:从介绍 下载 到拉取项目

实习的时候项目是svn管理的,这次mini的项目管理最后选择了美术策划友好的plasticSCM,但之前没有接触过,所以决定花费一点时间去了解,然后记录一下中间遇到的一些问题。 了解及下载Plastic b站很详细介绍PlasticSCM:Un…

input 调起键盘 ,键盘距离输入框底部太近

input 调起键盘 &#xff0c;键盘距离输入框底部太近 解决方法 cursorSpacing‘20’ 单位是 ‘px’ <input cursorSpacing20 type"text" v-model"replyMain" />距离底部距离 20px &#xff0c;输入框距离键盘距离是20px

pg 数据库,在新增的数据的时候,根据字段唯一性去更新数据

目录 1 问题2 实现 1 问题 在使用pg 数据库的时候&#xff0c;我们新增数据&#xff0c;希望如果有几个字段和数据库的一样&#xff0c;那么就更新数据&#xff0c;也就是在新增的时候&#xff0c;自动判断是否数据库有这个数据&#xff0c;有就更新&#xff0c;没有就新增 2…

Azure - 自动化机器学习AutoML Azure使用详解

目录 一、AutoML是如何工作的&#xff1f;二、何时考虑AutoML&#xff1f;三、AutoML助力训练与集成过程四、实战案例五、总结 自动化机器学习&#xff0c;简称为AutoML&#xff0c;旨在将机器学习模型的开发中繁琐且重复的任务自动化。这使得数据科学家、分析师以及开发人员能…

【数据分析】上市公司半年报数据分析

前言 前文介绍过使用网络技术获取上市公司半年报数据的方法&#xff0c;本文将对获取到的数据进行简要的数据分析。 获取数据的代码介绍在下面的两篇文章中 【java爬虫】使用selenium获取某交易所公司半年报数据-CSDN博客 【java爬虫】公司半年报数据展示-CSDN博客 全量数…

希尔顿集团飞猪旗舰店携海外酒店开启双11全球旅行囤货潮

【中国&#xff0c;上海&#xff0c;10月31日】继十一黄金周出游需求释放&#xff0c;旅游市场回归超预期&#xff0c;希尔顿集团洞悉旅行者们对于探索目的地的热情不减&#xff0c;于今日在希尔顿集团飞猪旗舰店正式上线2023年双11系列活动&#xff0c;并首次布局海外酒店&…

3D网页游戏外包开发引擎

3D网页开发引擎是用于创建具有三维图形、虚拟现实和交互性的网页应用程序的工具。以下是一些常用的3D网页开发引擎以及它们的主要特点&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1.Three.js&…

MySQL创建数据库和创建数据表

二、创建数据库 1. 连接 MySQL 输入 mysql -u root -p 命令&#xff0c;回车&#xff0c;然后输入 MySQL 的密码(不要忘记了密码)&#xff0c;再回车&#xff0c;就连接上 MySQL 了。 mysql -u root -p 最初&#xff0c;都是使用 root 用户登录&#xff0c;工作中如果一直用…

Unity Animator cpu性能测试

测试案例&#xff1a; 场景中共有4000个物体&#xff0c;挂在40个animtor 上&#xff0c;每个Animator控制100个物体的动画。 使用工具&#xff1a; Unity Profiler. Unity 版本&#xff1a; unity 2019.4.40f1 测试环境&#xff1a; 手机 测试过程&#xff1a; 没有挂…

6西格玛质量标准: 提升业务效率的关键

在现代竞争激烈的商业环境中&#xff0c;企业需要不断提高效率&#xff0c;降低成本&#xff0c;同时确保产品和服务的质量。为了达到这个目标&#xff0c;许多企业已经转向了6西格玛质量标准。这个方法旨在通过最小化缺陷和提高流程稳定性来优化业务运作&#xff0c;为客户提供…

Docker:命令

Docker&#xff1a;命令 1. 创建MySQL的命令解读2. 基础命令3. 案例 查看DockerHub&#xff0c;拉取Nginx镜像&#xff0c;创建并运行Nginx容器4. 命令别名附录 1. 创建MySQL的命令解读 docker run :创建并运行一个容器&#xff0c;-d 是让容器在后台运行--name:给容器起一个名…