Linux性能优化实践——CPU上下文

CPU上下文切换

Linux是一个多任务操作系统,它支持远大于CPU数量的任务同时运行。这些任务不是真正意义上的并行运行,而是系统在短时间内,将CPU轮流分配给它们,造成任务同时运行的错觉。
CPU需要知道任务从哪里加载,从哪里开始运行是通过设置好的CPU寄存器和程序计数器(Program Counter,PC)完成的。

  • CPU寄存器:CPU内置的容量小、但速度极快的内存;
  • 程序计数器:用来存储CPU正在执行的指令位置、或者即将执行的下一条指令位置。它们都是CPU在运行任何任务前,必须的依赖环境,因此也叫作CPU上下文。
    在这里插入图片描述
    CPU上下文切换,就是先把前一个任务的CPU上下文(CPU寄存器和程序计数器)保存起来,然后加载新任务的上下文到这些寄存器和程序计数器,最后再跳转到程序计数器所指的新位置,运行新任务。
    进程和线程是最常见的任务,除此之外,还有硬件通过出发信号,会导致中断处理程序的调用,也是一种常见的任务。
    根据任务的不同,CPU上下文切换就可以分为几个不同的场景,即进程上下文切换、线程上下文切换以及中断上下文切换。

进程上下文切换。

Linux 按照特权等级,把进程的运行空间分为内核空间和用户空间,CPU 特权等级的 Ring 0 和 Ring 3。

  • 内核空间(Ring 0)具有最高权限,可以直接访问所有资源;
  • 用户空间(Ring 3)只能访问受限资源,不能直接访问内存等硬件设备,必须通过系统调用陷入到内核中,才能访问这些特权资源。
    在这里插入图片描述
    进程既可以在用户空间运行,又可以在内核空间中运行。进程在用户空间运行时,被称为进程的用户态,而陷入内核空间的时候,被称为进程的内核态。

从用户态到内核态的转变,需要通过系统调用来完成。比如,当我们查看文件内容时,就需要多次系统调用来完成:首先调用 open() 打开文件,然后调用 read() 读取文件内容,并调用 write() 将内容写到标准输出,最后再调用 close() 关闭文件。

  1. 系统调用的过程有没有发生 CPU 上下文的切换呢?

答案自然是肯定的。

CPU 寄存器里原来用户态的指令位置,需要先保存起来。接着,为了执行内核态代码,CPU 寄存器需要更新为内核态指令的新位置。最后才是跳转到内核态运行内核任务。而系统调用结束后,CPU 寄存器需要恢复原来保存的用户态,然后再切换到用户空间,继续运行进程。所以,一次系统调用的过程,其实是发生了 两次 CPU 上下文切换。

系统调用过程中,并不会涉及到虚拟内存等进程用户态的资源,也不会切换进程。这跟我们通常所说的进程上下文切换是不一样的:

  • 进程上下文切换,是指从一个进程切换到另一个进程运行。
  • 而系统调用过程中一直是同一个进程在运行
    所以,系统调用过程通常称为特权模式切换,而不是上下文切换。但实际上,系统调用过程中,CPU 的上下文切换还是无法避免。
  1. 那么,进程上下文切换跟系统调用又有什么区别呢?

首先,进程是由内核来管理和调度的,进程的切换只能发生在内核态 。所以,进程的上下文不仅包括了虚拟内存、栈、全局变量等用户空间的资源,还包括了内核堆栈、寄存器等内核空间的状态。

因此,进程的上下文切换就比系统调用时多了一步:在保存当前进程的内核状态和 CPU 寄存器之前,需要先把该进程的虚拟内存、栈等保存下来;而加载了下一进程的内核态后,还需要刷新进程的虚拟内存和用户栈。

如下图所示,保存上下文和恢复上下文的过程并不是“免费”的,需要内核在 CPU 上运行才能完成
在这里插入图片描述
每次上下文切换都需要几十纳秒到数微秒的 CPU 时间。这个时间还是相当可观的,特别是在进程上下文切换次数较多的情况下,很容易导致 CPU 将大量时间耗费在寄存器、内核栈以及虚拟内存等资源的保存和恢复上,进而大大缩短了真正运行进程的时间。这也正是上一节中我们所讲的,导致平均负载升高的一个重要因素。

Linux 通过 TLB(Translation Lookaside Buffer)来管理虚拟内存到物理内存的映射关系。当虚拟内存更新后,TLB 也需要刷新,内存的访问也会随之变慢。特别是在多处理器系统上,缓存是被多个处理器共享的,刷新缓存不仅会影响当前处理器的进程,还会影响共享缓存的其他处理器的进程。

  1. 什么时候会切换进程上下文?

进程切换时才需要切换上下文,换句话说,只有在进程调度的时候,才需要切换上下文。Linux 为每个 CPU 都维护了一个就绪队列,将活跃进程(即正在运行和正在等待CPU 的进程)按照优先级和等待 CPU 的时间排序,然后选择最需要 CPU 的进程,也就是优先级最高和等待 CPU 时间最长的进程来运行。

  1. 进程在什么时候才会被调度到CPU上运行呢?

就是进程执行完终止了,它之前使用的 CPU 会释放出来,这个时候再从就绪队列里,拿一个新的进程过来运行。其实还有很多其他场景,也会触发进程调度,在这里我给你逐个梳理下。

其一,为了保证所有进程可以得到公平调度,CPU 时间被划分为一段段的时间片,这些时间片再被轮流分配给各个进程。这样,当某个进程的时间片耗尽了,就会被系统挂起,切换到其它正在等待 CPU 的进程运行。

其二,进程在系统资源不足(比如内存不足)时,要等到资源满足后才可以运行,这个时候进程也会被挂起,并由系统调度其他进程运行。

其三,当进程通过睡眠函数 sleep 这样的方法将自己主动挂起时,自然也会重新调度。

其四,当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂起,由高优先级进程来运行。

其五,发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序。

线程上下文切换

线程与进程最大的区别在于,线程是调度的基本单位,而进程则是资源拥有的基本单位

所谓内核中的任务调度,实际上的调度对象是线程;而进程只是给线程提供了虚拟内存、全局变量等资源。可以这么理解线程和进程:

当进程只有一个线程时,可以认为进程就等于线程。

当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源。这些资源在上下文切换时是不需要修改的。

另外,线程也有自己的私有数据,比如栈和寄存器等,这些在上下文切换时也是需要保存的

线程的上下文切换其实就可以分为两种情况:

第一种,前后两个线程属于不同进程。此时,因为资源不共享,所以切换过程就跟进程上下文切换是一样。

第二种,前后两个线程属于同一个进程。此时,因为虚拟内存是共享的,所以在切换时,虚拟内存这些资源就保持不动,只需要切换线程的私有数据、寄存器等不共享的数据

同进程内的线程切换,要比多进程间的切换消耗更少的资源,而这,也正是多线程代替多进程的一个优势。

中断上下文切换

为了快速响应硬件的事件,中断处理会打断进程的正常调度和执行,转而调用中断处理程序,响应设备事件。而在打断其他进程时,就需要将进程当前的状态保存下来,这样在中断结束后,进程仍然可以从原来的状态恢复运行。

跟进程上下文不同,中断上下文切换并不涉及到进程的用户态。所以,即便中断过程打断了一个正处在用户态的进程,也不需要保存和恢复这个进程的虚拟内存、全局变量等用户态资源。

中断上下文,其实只包括内核态中断服务程序执行所必需的状态,包括 CPU 寄存器、内核堆栈、硬件中断参数等。对同一个 CPU 来说,中断处理比进程拥有更高的优先级,所以中断上下文切换并不会与进程上下文切换同时发生。同样道理,由于中断会打断正常进程的调度和执行,所以大部分中断处理程序都短小精悍,以便尽可能快的执行结束。另外,跟进程上下文切换一样,中断上下文切换也需要消耗 CPU,切换次数过多也会耗费大量的 CPU,甚至严重降低系统的整体性能。所以,当你发现中断次数过多时,就需要注意去排查它是否会给你的系统带来严重的性能问题。

怎么查看系统的上下文切换情况

使用 vmstat (vmstat命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率、内存使用、虚拟内存交换情况、IO读写情况)这个工具,来查询系统的上下文切换情况,

vmstat安装
Manually Installing the vmstat collector

未完待续

参考链接:
1、https://zhuanlan.zhihu.com/p/406497025

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/15586.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Elasticsearch【域的属性、分词器、Elasticsearch搜索文档】(三)-全面详解(学习总结---从入门到深化)

目录 Elasticsearch常用操作_域的属性 分词器_默认分词器 分词器_IK分词器 分词器_拼音分词器 分词器_自定义分词器 Elasticsearch搜索文档_准备工作 Elasticsearch搜索文档_搜索方式 Elasticsearch常用操作_域的属性 index 该域是否创建索引。只有值设置为true&#…

CCF-CSP真题《202303-4 星际网络II》思路+python,c++满分题解

想查看其他题的真题及题解的同学可以前往查看:CCF-CSP真题附题解大全 试题编号:202303-4试题名称:星际网络II时间限制:2.0s内存限制:1.0GB问题描述: 问题描述 随着星际网络的进一步建设和规模的增大&#x…

Android Studio实现内容丰富的安卓视频管理平台

如需源码可以添加q-------3290510686,也有演示视频演示具体功能,源码不免费,尊重创作,尊重劳动。 项目编号081 1.开发环境 android stuido 2.功能介绍 安卓端: 1.注册登录 2.本地视频 3.视频播放 4.收藏功能 5.网路视频…

016 - STM32学习笔记 - SPI读写FLASH(一)

016 - STM32学习笔记 - SPI访问Flash(一) 之前csdn的名称是宥小稚,后来改成放学校门口见了,所以前面内容看到图片水印不要在意,都是自己学习过程中整理的,不涉及版权啥的。 1、什么是SPI? SP…

LabVIEW FPGA利用响应式数字电子板快速开发空间应用程序

LabVIEW FPGA利用响应式数字电子板快速开发空间应用程序 与传统的基于文本的语言相比,LabVIEW的编程和设计已被证明可以缩短开发时间。各种研究表明,生产率的提高在3到10倍之间。LabVIEW通过图形语言、集成开发环境和多个编译器的组合来实现这一点。 图…

Gateway服务集成Nacos2021.0.4错误解决

问题 gateway服务集成nacos,启动后报错: Caused by: com.alibaba.nacos.shaded.io.grpc.netty.shaded.io.netty.channel.AbstractChannel$AnnotatedConnectException: Connection refused: no further information:; 版本: jdk:1.8 spring-b…

营销人累了看看这5部影片吧!保你再燃激情

市场瞬息万变,做营销需不断学习充电,除了看书听课之外看电影也是学习营销的有效方式。今天小马识途营销顾问给大家推荐5部市场营销人员必看的高评分电影,相信看完之后,会对你今后的发展影响深远!话不多说直接上干货&am…

C++常用库函数 3.数据转换函数

函数名&#xff1a;abs 函数原型&#xff1a;int abs(int n)&#xff1b; 参数&#xff1a;n 整数值。 所需头文件&#xff1a;<cstdlib> 功能&#xff1a;求绝对值。 返回值&#xff1a;返回 n 的绝对值。函数名&#xff1a;atof&#xff0c;atoi&#xff0c;atol …

spring.profiles的使用详解

本文来说下spring.profiles.active和spring.profiles.include的使用与区别 文章目录 业务场景spring.profiles.active属性启动时指定 spring.profiles.include属性配置方法配置位置配置区别 用示例来使用和区分测试一测试二测试三 本文小结 业务场景 我们在开发Spring Boot应用…

Oracle之Scott用户

Oracle增删改查&#xff0c;事务与序列 前言 1、解锁scott用户 2、雇员表&#xff08;emp&#xff09; 3、部门表&#xff08;dept&#xff09; 4、工资等级表&#xff08;salgrade&#xff09;了解 5、奖金表&#xff08;bonus&#xff09;了解 1、解锁scott用户 --解锁scot…

API安全基础理论

1.什么是API API(Application Programming Interface,应用程序编程接口)是一些预先定义的函数&#xff0c;目的是提供应用程序与开发人员基于某软件或硬件的以访问一组例程的能力&#xff0c;而又无需访问源码&#xff0c;或理解内部工作机制的细节。通过淘宝API&#xff0c;就…

Python获取指定路径下所有文件的绝对路径

import osdef get_file_path_by_name(file_dir, format.JPG):获取指定路径下所有文件的绝对路径:param file_dir::return:L []for root, dirs, files in os.walk(file_dir): # 获取所有文件for file in files: # 遍历所有文件名if os.path.splitext(file)[1] format: L.ap…