C# OpenCvSharp DNN 部署L2CS-Net人脸朝向估计

效果

项目

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Linq;
using System.Text;
using System.Windows.Forms;namespace OpenCvSharp_DNN_Demo
{public partial class frmMain : Form{public frmMain(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;Mat result_image;Net opencv_net;Mat BN_image;StringBuilder sb = new StringBuilder();int reg_max = 16;int num_class = 1;int inpWidth = 640;int inpHeight = 640;float score_threshold = 0.25f;float nms_threshold = 0.5f;L2CSNet gaze_predictor;private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = startupPath + "\\yolov8n-face.onnx";//初始化网络类,读取本地模型opencv_net = CvDnn.ReadNetFromOnnx(model_path);gaze_predictor = new L2CSNet("l2cs_net_1x3x448x448.onnx");}private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}int newh = 0, neww = 0, padh = 0, padw = 0;Mat resize_img = Common.ResizeImage(image, inpHeight, inpWidth, ref newh, ref neww, ref padh, ref padw);float ratioh = (float)image.Rows / newh, ratiow = (float)image.Cols / neww;dt1 = DateTime.Now;//数据归一化处理BN_image = CvDnn.BlobFromImage(resize_img, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), true, false);//配置图片输入数据opencv_net.SetInput(BN_image);//模型推理,读取推理结果Mat[] outs = new Mat[3] { new Mat(), new Mat(), new Mat() };string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();opencv_net.Forward(outs, outBlobNames);List<Rect> position_boxes = new List<Rect>();List<float> confidences = new List<float>();List<List<OpenCvSharp.Point>> landmarks = new List<List<OpenCvSharp.Point>>();Common.GenerateProposal(inpHeight, inpWidth, reg_max, num_class, score_threshold, 40, 40, outs[0], position_boxes, confidences, landmarks, image.Rows, image.Cols, ratioh, ratiow, padh, padw);Common.GenerateProposal(inpHeight, inpWidth, reg_max, num_class, score_threshold, 20, 20, outs[1], position_boxes, confidences, landmarks, image.Rows, image.Cols, ratioh, ratiow, padh, padw);Common.GenerateProposal(inpHeight, inpWidth, reg_max, num_class, score_threshold, 80, 80, outs[2], position_boxes, confidences, landmarks, image.Rows, image.Cols, ratioh, ratiow, padh, padw);//NMS非极大值抑制int[] indexes = new int[position_boxes.Count];CvDnn.NMSBoxes(position_boxes, confidences, score_threshold, nms_threshold, out indexes);List<Rect> re_result = new List<Rect>();List<List<OpenCvSharp.Point>> re_landmarks = new List<List<OpenCvSharp.Point>>();List<float> re_confidences = new List<float>();for (int i = 0; i < indexes.Length; i++){int index = indexes[i];re_result.Add(position_boxes[index]);re_landmarks.Add(landmarks[index]);re_confidences.Add(confidences[index]);}float[] gaze_yaw_pitch = new float[2];float length = (float)(image.Cols / 1.5);result_image = image.Clone();if (re_result.Count > 0){sb.Clear();for (int i = 0; i < re_result.Count; i++){Mat crop_img = new Mat(result_image, re_result[i]);gaze_predictor.Detect(crop_img, gaze_yaw_pitch);//draw gaze	float pos_x = (float)(re_result[i].X + 0.5 * re_result[i].Width);float pos_y = (float)(re_result[i].Y + 0.5 * re_result[i].Height);float dy = (float)(-length * Math.Sin(gaze_yaw_pitch[0]) * Math.Cos(gaze_yaw_pitch[1]));float dx = (float)(-length * Math.Sin(gaze_yaw_pitch[1]));OpenCvSharp.Point from = new OpenCvSharp.Point((int)pos_x, (int)pos_y);OpenCvSharp.Point to = new OpenCvSharp.Point((int)(pos_x + dx), (int)(pos_y + dy));Cv2.ArrowedLine(result_image, from, to, new Scalar(255, 0, 0), 2, 0, 0, 0.18);Cv2.Rectangle(result_image, re_result[i], new Scalar(0, 0, 255), 2, LineTypes.Link8);//Cv2.Rectangle(result_image, new OpenCvSharp.Point(re_result[i].X, re_result[i].Y), new OpenCvSharp.Point(re_result[i].X + re_result[i].Width, re_result[i].Y+ re_result[i].Height), new Scalar(0, 255, 0), 2);Cv2.PutText(result_image, "face-" + re_confidences[i].ToString("0.00"),new OpenCvSharp.Point(re_result[i].X, re_result[i].Y - 10),HersheyFonts.HersheySimplex, 1, new Scalar(0, 0, 255), 2);foreach (var item in re_landmarks[i]){Cv2.Circle(result_image, item, 2, new Scalar(0, 255, 0), -1);}sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})", "face", re_confidences[i].ToString("0.00"), re_result[i].TopLeft.X, re_result[i].TopLeft.Y, re_result[i].BottomRight.X, re_result[i].BottomRight.Y));}dt2 = DateTime.Now;sb.AppendLine("--------------------------");sb.AppendLine("耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = sb.ToString();}else{textBox1.Text = "无信息";}}}
}

参考

GitHub - Ahmednull/L2CS-Net: The official PyTorch implementation of L2CS-Net for gaze estimation and tracking

下载

可执行程序exe包0积分下载

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/156381.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

成集云 | 英克ERP对接批发销售门店 | 解决方案

方案介绍 批发连锁门店是一种以批发销售为主&#xff0c;通过连锁经营方式进行管理的商业组织形态。它通常由一个总店或总公司负责管理和运营&#xff0c;下面拥有多个分店或加盟店&#xff0c;形成一个连锁经营网络。主要业务是向下游零售商或消费者销售商品&#xff0c;因此…

图像特征Vol.1:计算机视觉特征度量|第二弹:【统计区域度量】

目录 一、前言二、统计区域度量2.1&#xff1a;图像矩特征2.1.1&#xff1a;原始矩/几何矩2.1.2&#xff1a;中心距2.1.3&#xff1a;归一化的中心矩2.1.4&#xff1a;不变矩——Hu矩2.1.5&#xff1a;OpenCv实现矩特征及其应用 2.2&#xff1a;点度量特征2.3&#xff1a;全局直…

智力测试情商测试小程序源码/带流量主提升智力微信小程序源码

智力测试情商测试小程序源码&#xff0c;这是一个考验智力&#xff0c;心理上面的一个测试游戏&#xff0c;支持多种测试方法。 比如有: 智商测试丨情商测试 | 性格测试丨爱情测试 | 抑郁症测试丨焦虑症测试 | 心理压力测试丨生活满意度测试&#xff0c;通过不同的测试&#xf…

单元化架构的思考

银行业“多活”的发展历程 受监管政策的要求&#xff0c;银行一般会在同城、异地或者多地进行数据中心建设&#xff0c;以保证系统的稳定运行&#xff0c;但从目前实际情况来看&#xff0c;“同城双活”目前仍是很多银行采用的主要形式。银行业的“多活”架构在发展过程中存在三…

信道数据传输速率、信号传播速度——参考《天勤计算机网络》

一、缘起题目 二、解析 三、总结 信道数据传输速率和信号传播速度是两个不同的概念。 3.1 信道数据传输速率&#xff08;Channel Data Transfer Rate&#xff09; 指的是在通信系统中&#xff0c;通过信道传输的数据量&#xff0c;通常以 比特率&#xff08;bits per second…

python项目部署代码汇总:目标检测类、人体姿态类

一、AI健身计数 1、图片视频检测 &#xff08;cpu运行&#xff09;&#xff1a; 注&#xff1a;左上角为fps&#xff0c;左下角为次数统计。 1.哑铃弯举&#xff1a;12&#xff0c;14&#xff0c;16 详细环境安装教程&#xff1a;pyqt5AI健身CPU实时检测mediapipe 可视化界面…

macOS 创建Flutter项目

参考在 macOS 上安装和配置 Flutter 开发环境 - Flutter 中文文档 - Flutter 中文开发者网站 - Flutter 这个文档&#xff0c;配置好flutter的环境 编辑器可以选择vscode或者IDEA。 我这里以IDEA为例 打开 IDE 并选中 New Flutter Project。 选择 Flutter&#xff0c;验证 F…

【MongoDB】Windows 安装MongoDB 6.0

一、下载安装包 安装包下载地址https://www.mongodb.com/try/download/community这里我选择的是 二、解压并安装 1、解压 这里我将压缩包解压到了D盘&#xff0c;并重命名成了mongodb&#xff0c;解压后的目录如下&#xff1a; 2、创建配置文件 在D:\mongodb下新建conf目录…

前度开发面试题

面试题总结 vue页面跳转会经过两个钩子函数beforeEach、afterEach 组见守卫 beforeRouteEnter前置组见守卫 *beforeRouteUpdate更新之前 watch和computed区别 数据没有改变&#xff0c;则 computed 不会重新计算&#xff09;。若没改变&#xff0c;计算属性会立即返回之前缓…

OSPF高级特性

OSPF高级特性(1) 一、OSPF不规则区域类型 产生原因&#xff1a;区域划分不合理&#xff0c;导致的问题 1、非骨干区域无法和骨干区域保持连通 2、骨干区域被分割 造成后果&#xff1a;非骨干区域没和骨干区域相连&#xff0c;导致ABR将不会帮忙转发区域间的路由信息。非骨干区…

【TES720D】青翼科技基于复旦微的FMQL20S400全国产化ARM核心模

板卡概述 TES720D是一款基于上海复旦微电子FMQL20S400的全国产化核心模块。该核心模块将复旦微的FMQL20S400&#xff08;兼容FMQL10S400&#xff09;的最小系统集成在了一个50*70mm的核心板上&#xff0c;可以作为一个核心模块&#xff0c;进行功能性扩展&#xff0c;特别是用…

测试用例设计——WEB通用测试用例

现在项目做完了&#xff0c;我觉得还是有必要总结一下&#xff0c;学习到的内容。毕竟有总结才能有提高嘛&#xff01;总结一下通用的东西&#xff0c;不管什么项目基本都可能会遇到&#xff0c;有写地方也有重复的或者有的是按照个人的习惯来总结的不一定都对&#xff0c;有不…