图像二值化阈值调整——OTSU算法(大津法/最大类间方差法)

大津算法(OTSU算法)是一种常用的图像二值化方法,用于将灰度图像转化为二值图像。该算法由日本学者大津展之于1979年提出,因此得名。

大津算法的核心思想是通过寻找一个阈值,将图像的像素分为两个类别:前景和背景。具体步骤如下:

  1. 统计图像的灰度直方图,得到每个灰度级的像素数目。
  2. 遍历所有可能的阈值(0到255),计算根据该阈值将图像分为前景和背景的类内方差。
  3. 根据类内方差的最小值确定最佳阈值。

在大津算法中,类内方差是衡量前景和背景之间差异的度量。通过选择使类内方差最小的阈值,可以实现最佳的图像分割效果。

大津算法的优点是简单易懂,计算效率高。它适用于灰度图像的二值化处理,特别是对于具有双峰直方图的图像效果更好。然而,该算法对于具有非双峰直方图的图像可能产生较差的分割结果。因此,在应用大津算法之前,需要对图像的直方图进行分析,确保适用性。

大津算法在图像处理中被广泛应用,例如在文档图像处理、目标检测、图像分割等领域。

下面推导类间方差函数:

设阈值为灰度k(k\in \left [ 0,L-1 \right ],L=256)。这个阈值把图像像素分割成两类,C1类像素小于等于k,C2类像素大于k。设这两类像素各自的均值为m_1,m_2,图像全局均值为m_G。同时像素被分为C1和C2类的概率分别为p_1,p_2。则有:

p_1m_1+p_2m_2=m_G

p_1+p_2=1

根据方差的概念,类间方差表达式为:

\sigma ^2=p_1\left ( m_1-m_G \right )^2+p_2\left ( m_2-m_G \right )^2

展开:

\sigma ^2=p_1m_1^2+p_1m_G^2-2p_1m_1m_G+p_2m_2^2+p_2m_G^2-2p_2m_2m_G

合并2,5及3,6项可得:

\sigma ^2=p_1m_1^2+p_2m_2^2+m_G^2-2m_G^2=p_1m_1^2+p_2m_2^2-m_G^2

我们再把m_G=p_1m_1+p_2m_2代回得到:

\sigma ^2=(p_1-p_1^2)m_1^2+(p_2-p_2^2)m_2^2-2p_1p_2m_1m_2

再注意到p_1+p_2=1,所以p_1-p_1^2=p_1(1-p_1)=p_1p_2p_2-p_2^2=p_2(1-p_2)=p_1p_2,从而得到:

\sigma ^2=p_1p_2(m_1-m_2)^2

对于给定的阈值k,我们可以统计出灰度级的分布列:

灰度值01...255
p_ip_0p_1...p_{255}

显然根据分布列性质有\sum_{i=0}^{L-1}p_i=1(请注意这里的p_1,p_2是分布列中的,不是上面的定义)

那么有:

p_1=\sum_{i=0}^{k-1}p_i,p_2=\sum_{i=k}^{L-1}p_i,m_1=\sum_{i=0}^{k-1}ip_i,m_2=\sum_{i=k}^{L-1}ip_i

将k从\left [ 0,L-1 \right ]遍历,找出使得\sigma ^2最大的k值,这个k值就是阈值。

对于分割,这个分割就是二值化,OpenCV给了以下几种方式(同threshold):

cv2帮助文档:

Miscellaneous Image Transformations — OpenCV 3.0.0-dev documentationicon-default.png?t=N7T8https://docs.opencv.org/3.0-last-rst/modules/imgproc/doc/miscellaneous_transformations.html?highlight=threshold#threshold代码实现:

首先是原理部分的实现,这部分我们使用numpy:

import cv2
import numpy as npdef OTSU(img_gray, GrayScale):assert img_gray.ndim == 2, "must input a gary_img"  # shape有几个数字, ndim就是多少img_gray = np.array(img_gray).ravel().astype(np.uint8)u1 = 0.0  # 背景像素的平均灰度值u2 = 0.0  # 前景像素的平均灰度值th = 0.0# 总的像素数目PixSum = img_gray.size# 各个灰度值的像素数目PixCount = np.zeros(GrayScale)# 各灰度值所占总像素数的比例PixRate = np.zeros(GrayScale)# 统计各个灰度值的像素个数for i in range(PixSum):# 默认灰度图像的像素值范围为GrayScalePixvalue = img_gray[i]PixCount[Pixvalue] = PixCount[Pixvalue] + 1# 确定各个灰度值对应的像素点的个数在所有的像素点中的比例。for j in range(GrayScale):PixRate[j] = PixCount[j] * 1.0 / PixSumMax_var = 0# 确定最大类间方差对应的阈值for i in range(1, GrayScale):  # 从1开始是为了避免w1为0.u1_tem = 0.0u2_tem = 0.0# 背景像素的比列w1 = np.sum(PixRate[:i])# 前景像素的比例w2 = 1.0 - w1if w1 == 0 or w2 == 0:passelse:  # 背景像素的平均灰度值for m in range(i):u1_tem = u1_tem + PixRate[m] * mu1 = u1_tem * 1.0 / w1# 前景像素的平均灰度值for n in range(i, GrayScale):u2_tem = u2_tem + PixRate[n] * nu2 = u2_tem / w2# print(u1)# 类间方差公式:G=w1*w2*(u1-u2)**2tem_var = w1 * w2 * np.power((u1 - u2), 2)# print(tem_var)# 判断当前类间方差是否为最大值。if Max_var < tem_var:Max_var = tem_var  # 深拷贝,Max_var与tem_var占用不同的内存空间。th = ireturn thdef main():img = cv2.imread('6.jpg', 0)# 将图片转为灰度图th = OTSU(img, 256)print("使用numpy的方法:" + str(th))  # 结果为 136main()

然后是基于cv2的OTSU实现,cv2可直接指定使用:

import cv2
import matplotlib.pylab as pltdef main2():img = cv2.imread('6.jpg', 0)ret, thresh1 = cv2.threshold(img, 0, 255, cv2.THRESH_OTSU)print(ret)  # 结果是135.0titles = ['Original Image', 'After Binarization']images = [img, thresh1]for i in range(2):plt.subplot(1, 2, i+1)plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([])plt.yticks([])plt.show()main2()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/157016.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LangChain介绍及代码实践

一、简介 LangChian 作为一个大语言模型开发框架&#xff0c;是 LLM 应用架构的重要一环。那什么是 LLM 应用架构呢&#xff1f;其实就是指基于语言模型的应用程序设计和开发的架构。 LangChian 可以将 LLM 模型、向量数据库、交互层 Prompt、外部知识、外部工具整合到一起&a…

与云栖的浪漫邂逅:记一段寻找云端之美的旅程

云端之旅 2023 年的云栖大会如约而至&#xff0c;这次云栖大会也是阿里新任掌门蔡老板当任阿里巴巴董事局主席以来的第一次。大会与以往有很多不一样的地方&#xff0c;其中 AIGC 更是本届大会的重点议题&#xff01;你会感叹&#xff0c;阿里还是猛啊&#xff01; 我逛了下展…

高校教务系统登录页面JS分析——天津大学

高校教务系统密码加密逻辑及JS逆向 本文将介绍天津大学教务系统的密码加密逻辑以及使用JavaScript进行逆向分析的过程。通过本文&#xff0c;你将了解到密码加密的基本概念、常用加密算法以及如何通过逆向分析来破解密码。 本文仅供交流学习&#xff0c;勿用于非法用途。 一、密…

优先队列----数据结构

概念 不知道你玩过英雄联盟吗&#xff1f;英雄联盟里面的防御塔会攻击离自己最近的小兵&#xff0c;但是如果有炮车兵在塔内&#xff0c;防御塔会优先攻击炮车&#xff08;因为炮车的威胁性更大&#xff09;&#xff0c;只有没有兵线在塔内时&#xff0c;防御塔才会攻击英雄。…

Azure机器学习 - 在 Azure 机器学习中上传、访问和浏览数据

目录 一、环境准备二、设置内核三、下载使用的数据四、创建工作区的句柄五、将数据上传到云存储空间六、访问笔记本中的数据七、创建新版本的数据资产八、清理资源 机器学习项目的开始阶段通常涉及到探索性数据分析 (EDA)、数据预处理&#xff08;清理、特征工程&#xff09;以…

Android 10.0 framework关于systemUI定制之导航栏透明背景的功能实现

1.概述 在10.0的系统产品定制化开发中,在对于系统原生SystemUI的导航栏背景在沉浸式导航栏的 情况下默认是会随着背景颜色的变化而改变的,在一些特定背景下导航栏的背景也是会改变的,所以由于产品开发需要 要求需要设置导航栏背景为透明的,所以就需要在Activity创建的时候…

【贝叶斯回归】【第 1 部分】--pyro库应用

Bayesian Regression - Introduction (Part 1) — Pyro Tutorials 1.8.6 documentation 一、说明 我们很熟悉线性回归的问题&#xff0c;然而&#xff0c;一些问题看似不似线性问题&#xff0c;但是&#xff0c;用贝叶斯回归却可以解决。本文使用土地平整度和国家GDP的关系数据…

10.30寄存器,寄存器堆

寄存器 8位环形移位寄存器 module shift_regist (input wire clk,input wire rstn,input wire [7:0]D,output reg [7:0]Q ); always (posedge clk or negedge rstn) beginif(!rstn)Q<8b000000;elseQ<{D[6:0],D[7]} ; end endmodule //shift_regist 输入有时钟…

gRPC源码剖析-Builder模式

一、Builder模式 1、定义 将一个复杂对象的构建与表示分离&#xff0c;使得同样的构建过程可以创建不同的的表示。 2、适用场景 当创建复杂对象的算法应独立于该对象的组成部分以及它们的装配方式时。 当构造过程必须允许被构造的对象有不同的表示时。 说人话&#xff1a…

Ubuntu 使用 nginx 搭建 https 文件服务器

Ubuntu 使用 nginx 搭建 https 文件服务器 搭建步骤安装 nginx生成证书修改 config重启 nginx 搭建步骤 安装 nginx生成证书修改 config重启 nginx 安装 nginx apt 安装&#xff1a; sudo apt-get install nginx生成证书 使用 openssl 生成证书&#xff1a; 到对应的路径…

Android广播BroadcastReceiver

BroadcastReceiver组件 BroadcastReceiver是Android中的一个组件&#xff0c;用于接收和处理系统广播或应用内广播。它可以监听系统事件或应用内自定义的广播&#xff0c;并在接收到广播时执行相应的操作。 广播是一种用于在应用组件之间传递消息的机制。通过发送广播&#x…

C++STL---Vector、List所要掌握的基本知识

绪论​ 拼着一切代价&#xff0c;奔你的前程。 ——巴尔扎克&#xff1b;本章主要围绕vector和list的使用&#xff0c;以及容器底层迭代器失效问题&#xff0c;同时会有对原码的分析和模拟实现其底层类函数。​​​​话不多说安全带系好&#xff0c;发车啦&#xff08;建议电脑…