进程空间管理:用户态和内核态

用户态虚拟空间里面有几类数据,例如代码、全局变量、堆、栈、内存映射区等。在 struct mm_struct 里面,有下面这些变量定义了这些区域的统计信息和位置。

unsigned long mmap_base;  /* base of mmap area */
unsigned long total_vm;    /* Total pages mapped */
unsigned long locked_vm;  /* Pages that have PG_mlocked set */
unsigned long pinned_vm;  /* Refcount permanently increased */
unsigned long data_vm;    /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
unsigned long exec_vm;    /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
unsigned long stack_vm;    /* VM_STACK */
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;

其中,total_vm 是总共映射的页的数目。我们知道,这么大的虚拟地址空间,不可能都有真实内存对应,所以这里是映射的数目。当内存吃紧的时候,有些页可以换出到硬盘上,有的页因为比较重要,不能换出。locked_vm 就是被锁定不能换出,pinned_vm 是不能换出,也不能移动。

data_vm 是存放数据的页的数目,exec_vm 是存放可执行文件的页的数目,stack_vm 是栈所占的页的数目。

start_code 和 end_code 表示可执行代码的开始和结束位置,start_data 和 end_data 表示已初始化数据的开始位置和结束位置。

start_brk 是堆的起始位置,brk 是堆当前的结束位置。前面咱们讲过 malloc 申请一小块内存的话,就是通过改变 brk 位置实现的。

start_stack 是栈的起始位置,栈的结束位置在寄存器的栈顶指针中。

arg_start 和 arg_end 是参数列表的位置, env_start 和 env_end 是环境变量的位置。它们都位于栈中最高地址的地方。

mmap_base 表示虚拟地址空间中用于内存映射的起始地址。一般情况下,这个空间是从高地址到低地址增长的。前面咱们讲 malloc 申请一大块内存的时候,就是通过 mmap 在这里映射一块区域到物理内存。咱们加载动态链接库 so 文件,也是在这个区域里面,映射一块区域到 so 文件。

这下所有用户态的区域的位置基本上都描述清楚了。整个布局就像下面这张图这样。虽然 32 位和 64 位的空间相差很大,但是区域的类别和布局是相似的。

堆是从低地址向高地址增长的,sys_brk 函数的参数 brk 是新的堆顶位置,而当前的 mm->brk 是原来堆顶的位置。

首先要做的第一个事情,将原来的堆顶和现在的堆顶,都按照页对齐地址,然后比较大小。如果两者相同,说明这次增加的堆的量很小,还在一个页里面,不需要另行分配页,直接跳到 set_brk 那里,设置 mm->brk 为新的 brk 就可以了。

如果发现新旧堆顶不在一个页里面,麻烦了,这下要跨页了。如果发现新堆顶小于旧堆顶,这说明不是新分配内存了,而是释放内存了,释放的还不小,至少释放了一页,于是调用 do_munmap 将这一页的内存映射去掉。

如果堆将要扩大,就要调用 find_vma。如果打开这个函数,看到的是对红黑树的查找,找到的是原堆顶所在的 vm_area_struct 的下一个 vm_area_struct,看当前的堆顶和下一个 vm_area_struct 之间还能不能分配一个完整的页。如果不能,没办法只好直接退出返回,内存空间都被占满了。

如果还有空间,就调用 do_brk 进一步分配堆空间,从旧堆顶开始,分配计算出的新旧堆顶之间的页数。

内核态的虚拟空间和某一个进程没有关系,所有进程通过系统调用进入到内核之后,看到的虚拟地址空间都是一样的。

在内核态,32 位和 64 位的布局差别比较大,主要是因为 32 位内核态空间太小了。32 位的内核态虚拟地址空间一共就 1G,占绝大部分的前 896M,我们称为直接映射区。

所谓的直接映射区,就是这一块空间是连续的,和物理内存是非常简单的映射关系,其实就是虚拟内存地址减去 3G,就得到物理内存的位置。

  • __pa(vaddr) 返回与虚拟地址 vaddr 相关的物理地址;
  • __va(paddr) 则计算出对应于物理地址 paddr 的虚拟地址。

其实 64 位的内核布局反而简单,因为虚拟空间实在是太大了,根本不需要所谓的高端内存,因为内核是 128T,根本不可能有物理内存超过这个值。

64 位的内核主要包含以下几个部分。从 0xffff800000000000 开始就是内核的部分,只不过一开始有 8T 的空档区域。

从 __PAGE_OFFSET_BASE(0xffff880000000000) 开始的 64T 的虚拟地址空间是直接映射区域,也就是减去 PAGE_OFFSET 就是物理地址。虚拟地址和物理地址之间的映射在大部分情况下还是会通过建立页表的方式进行映射。

从 VMALLOC_START(0xffffc90000000000)开始到 VMALLOC_END(0xffffe90000000000)的 32T 的空间是给 vmalloc 的。从 VMEMMAP_START(0xffffea0000000000)开始的 1T 空间用于存放物理页面的描述结构 struct page 的。

从 __START_KERNEL_map(0xffffffff80000000)开始的 512M 用于存放内核代码段、全局变量、BSS 等。这里对应到物理内存开始的位置,减去 __START_KERNEL_map 就能得到物理内存的地址。这里和直接映射区有点像,但是不矛盾,因为直接映射区之前有 8T 的空当区域,早就过了内核代码在物理内存中加载的位置。

进程运行状态在 32 位下对应关系。

对于 64 位的对应关系,只是稍有区别。

此文章为11月Day2学习笔记,内容来源于极客时间《趣谈Linux操作系统》,推荐该课程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/157821.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

通过xshell传输文件到服务器

一、user is not in the sudoers file. This incident will be reported. 参考链接: [已解决]user is not in the sudoers file. This incident will be reported.(简单不容易出错的方式)-CSDN博客 简单解释下就是: 0、你的root需要设置好密码 sudo …

SpringCloud(七) Feign远程调用

目录 一, RestTemplate远程调用存在的问题 二, Feign的远程调用 2.1 什么是Fegin 2.2 Feign的使用(代替RestTemplate) 1. 引入依赖 2. 添加注解 3. 编写Feign的客户端 4. 测试 5. 总结 2.3 自定义配置 1. 配置文件方式 2. Java代码方式 三, Feign使用优化 3.…

Python 框架学习 Django篇 (八) 代码优化、数据库冗余处理

我们开发软件系统的时候,需要不断的反思我们代码里面是否有可以优化的地方。而优化的重点之一,就是把冗余的代码优化为可以复用的库。我们在前面编写了一些功能,但是其中存在很多冗余的方法 mgr/medicine.py mgr/k8s.py mgr/medicine.py 打开…

【网络安全 --- 任意文件上传漏洞靶场闯关 6-15关】任意文件上传漏洞靶场闯关,让你更深入了解文件上传漏洞以及绕过方式方法,思路技巧

一,工具资源下载 百度网盘资源下载链接地址: 百度网盘 请输入提取码百度网盘为您提供文件的网络备份、同步和分享服务。空间大、速度快、安全稳固,支持教育网加速,支持手机端。注册使用百度网盘即可享受免费存储空间https://pan…

NoSQL数据库使用场景以及架构介绍

文章目录 一. 什么是NoSQL?二. NoSQL分类三. NoSQL与关系数据库有什么区别四. NoSQL主要优势和缺点五. NoSQL体系框架 其它相关推荐: 系统架构之微服务架构 系统架构设计之微内核架构 鸿蒙操作系统架构 架构设计之大数据架构(Lambda架构、Kap…

CCF_A 计算机视觉顶会CVPR2024投稿指南以及论文模板

目录 CVPR2024官网: CVPR2024投稿链接: CVPR2024 重要时间节点: CVPR2024投稿模板: WORD: LATEX : CVPR2024_AuthorGuidelines CVPR2024投稿Topics: CVPR2024官网: https://cvpr.thecvf.com/Conferences/2024CV…

你一般会什么时候使用CHATGPT?

在当今数字时代,人们对于人工智能(AI)的依赖程度日益增加,而ChatGPT作为一种强大的自然语言处理工具,吸引了人们的广泛关注和应用。那么,人一般在什么时候会想要使用ChatGPT呢?这个问题涵盖了多…

GPT与人类共生:解析AI助手的兴起

随着GPT模型的崭新应用,如百度的​1​和CSDN的​2​,以及AI助手的普及,人们开始讨论AI对就业市场和互联网公司的潜在影响。本文将探讨GPT和AI助手的共生关系,以及我们如何使用它们,以及使用的平台和动机。 GPT和AI助手…

【驱动开发】注册字符设备使用gpio设备树节点控制led三盏灯的亮灭

注册字符设备使用gpio设备树节点控制led三盏灯的亮灭 设备树: 头文件: #ifndef __HEAD_H__ #define __HEAD_H__ typedef struct {unsigned int MODER;unsigned int OTYPER;unsigned int OSPEEDR;unsigned int PUPDR;unsigned int IDR;unsigned int OD…

[架构之路-250/创业之路-81]:目标系统 - 纵向分层 - 企业信息化的呈现形态:常见企业信息化软件系统 - 企业内的数据与数据库

目录 一、数据概述 1.1 数据 1.2 企业信息系统的数据 1.3 大数据 1.4 数据与程序的分离思想 1.5 数据与程序的分离做法 1.6 数据库的基本概念 1.7 企业数据来源 1.8 企业数据架构 二、常见的数据库类型 2.1 数据库分类 2.1 数据库类型 2.2 常见的数据库类型、应用…

5.1 创建和销毁线程

方法 pthread_create(thread, attr, start_routine, arg)pthread_exit(status)pthread_cancel(thread)pthread_attr_init(attr)pthread_attr_destroy(attr) 创建线程 最开始main()程序只有一个默认的线程,其他的线程需要由编程人员显式创建。pthread_create()可以…

二叉树问题——前/中/后/层遍历问题(递归与栈)

摘要 博文主要介绍二叉树的前/中/后/层遍历(递归与栈)方法 一、前/中/后/层遍历问题 144. 二叉树的前序遍历 145. 二叉树的后序遍历 94. 二叉树的中序遍历 102. 二叉树的层序遍历 103. 二叉树的锯齿形层序遍历 二、二叉树遍历递归解析 // 前序遍历递归LC144_二叉树的前…